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Spin-forbidden chemistry within the Breit-Pauli approximation 

by DAVID R. YARKONY 
Department of Chemistry, The Johns Hopkins University, 

Baltimore, MD 21218, USA 

Recent advances in the computational techniques available to characterize spin- 
forbidden processes with the Breit-Pauli approximation are reviewed and the use of 
these techniques is illustrated. These computational advances include: 

(i) The use of symbolic matrix element techniques to evaluate matrix elements 
of the full microscopic spin-orbit Hamiltonian (both the spin-orbit and 
spin-other-orbit terms) and the dipolar spin-spin Hamiltonian. This 
approach permits the Breit-Pauli interaction to be characterized in terms 
of large configurations state functions (CSF) spaces 2 lo6 terms. 

(ii) The relativistic wavefunctions are determined, directly in the CSF basis, 
using quasi-degenerate perturbation theory. This approach avoids the 
computational bottleneck which occurs if the perturbed wavefunction is 
determined in the eigenstate basis of Ho,  the non-relativistic Born- 
Oppenheimer Hamiltonian. 

(iii) The use of a Lagrange-Newton, analytic gradient-MCSCF/CI wavefunc- 
tion based, algorithm for determining the minimum energy point on the 
surface of intersection of two potential energy surfaces of different spin 
multiplicity. This algorithm facilitates determination of the energetically 
accessible portion of the crossing hypersurface without having to charac- 
terize the entire crossing surface. 

Four applications of the computational techniques reviewed in this work to 
practical problems in chemical physics are provided. Two examples of spin- 
forbidden radiative decay are discussed. The first, which considers the radiative 
decay process a'A+X3Z- in CH-, was chosen to illustrate the practical 
importance of solving for the perturbed wavefunctions directly in the CSF basis. 
The second example considers the decay of the a3Zf state of NO+, a3Z++X'Zt 
and examines the computational and conceptual advantages which obtain from the 
use of quasi-degenerate perturbation theory. Next we consider spin-forbidden 
radiationless decay examining the decay of NH/ND(c'll). This system provides an 
example of predissociation induced by the dipolar spin-spin Hamiltonian. The 
c'E-a'A transition in this system is frequently used as a laser-induced fluorescence 
probe of NH produced in laboratory and combustion environments. However it 
was not known, and it was a matter of some controversy, whether NH(c'll, u = O )  
was predissociated. Finally we consider the spin-forbidden ground state reaction 
CH(XZII)+N2(X'C:)+HCN(X1Z+) +N(4S). This reaction is the chain initiating 
step in the 'prompt' production of NO in flame fronts. Our discussion of this 
reaction illustrates how the minimum energy crossing algorithm and a Landau- 
Zener analysis can be used to provide a clear conceptual picture of a spin-forbidden 
reaction and set the stage for a computational determination of its rate constant. 

1. Introduction 
This review is concerned with chemical processes involving atoms with small 

atomic number (2 Q 30) in which total electron spin is not conserved. The systems we 
will treat are initially in an electronic state of a given spin multiplicity 2s + 1, whereas at 
the end of the observation the electronic state of the system has spin multiplicity 2S'+ 1. 
Implicit in this statement is the assumption that total electron spin is approximately a 
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196 D. R. Yarkony 

good quantum number and that the forces which are responsible for the lack of 
conservation of this quantity can be treated perturbatively. The well-founded 
mathematical approximation which describes this situation is known as the Breit- 
Pauli approximation (Bethe and Salpeter 1977). The contributions to the Breit-Pauli 
interaction are summarized below. 

In the presence of electric and magnetic fields E(r) and H(r) the Breit-Pauli 
Hamiltonian is given by (Bethe and Salpeter 1977, Langhoff and Kern 1977) 

6 

H = H O +  H'=HO+H;~, (1.1) 
i = l  

where H o  is the non-relativistic Born-Oppenheimer Hamiltonian and the relativistic 

(1.2a) 

(1.2 b) 

(1.24 

(1.3 a) 

(1.3 b) 

(1.3 c) 

( 1-41 

(1.5) 

( 1-61 

Here R,  denotes the coordinates of the Kth nucleus and ri the coordinates of the ith 
electron and rij = ri - rj. In equation (1.1) the Born-Oppenheimer approximation has 
been employed so that the R,  are taken as fixed. In addition to H!' relativistic effects 
introduce a contribution to the nuclear rotation portion of the total Hamiltonian. 
These effects can be included in a systematic manner (Mizushima 1975) but will be 
considered only briefly in this review. 

The physical significance of the contributions to HYP is as follows (Bethe and 
Salpeter 1977, Langhoff and Kern 1977). H', specified in equation (1.2), represents the 
total microscopic spin-orbit interaction and is comprised of the one electron spin- 
orbit part (equation (1.2 (b)) and the two electron spin-other-orbit part (equation 
(1.2 c)). H 2 ,  specified in equation (1.3), represents the interactions of the spin magnetic 
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Spin-forbidden chemistry 197 

dipole moments and includes the dipolar spin-spin contribution (Hss in equation 
(1.3b)) and the Fermi contact term (H'" in equation (1.3 c)). H 3  represents correction 
terms originally introduced by Dirac as a consequence of electron spin. H4 represents 
the classical correction to the electron-electron interaction due to the retardation of the 
electromagnetic field of the electron. H5 is the relativistic correction due to the 
variation of electron mass with velocity. H6 represents the interaction with the electric 
and magnetic fields. The terms HBP = Hso + Hss lift the 2s + 1 degeneracy. The remainder 
of this review focuses on these operators. 

There is a substantial literature which examines the limits and corrections to the 
Breit-Pauli approximation. It is for example well known that this approximation 
breaks down then 2 becomes large (Blume and Watson 1962,1963, Fraga, Saxena and 
Lo 1971). We will not attempt to review this situation; however a few comments in this 
regard are appropriate. One of the principal effects omitted in a treatment which 
includes only HBp is the relativistic contraction of the molecular orbitals (Ermler, Ross 
and Christiansen 1988) due to the mass-velocity operator (H5) an effect whose 
importance increases with Z .  Several appr.oaches exist which attempt to correct this 
situation while retaining the spirit, and simplifications, of the Breit-Pauli approxim- 
ation. The first of these is the relativistic effective core approximation (Lee, Ermler and 
Pitzer 1977, Ermler, Lee, Christiansen and Pitzer 1981, Stevens and Krauss 1982, Pitzer 
and Winter 1988). In this approach the innermost or core electrons of a given atom are 
replaced with an effective core potential obtained from an atomic Dirac-Fock 
calculation (Desclaux 1975) and an effective one electron spin-orbit operator is 
constructed for the remaining, valence, electrons. Applications of this approach have 
been recently reviewed (Ermler, Ross and Christiansen 1988, Balasubramanian 1989). 
A second approach includes all electrons explicitly and uses HBP as defined above. The 
relativistic contraction of the core electrons is included by using a variational one- 
component spin-free approximation (Hess 1986, Hess and Chandra 1987) to the no- 
pair Hamiltonian (Sucher 1980) at the orbital optimization stage. The variational 
nature ofthe approximation provides advantages over the use of the mass-velocity (H5) 
term given above. Recent applications of this approach to the spectra of CuH and NiH 
have been reported (Marian 1990, 1991). In this review, which is restricted to low 2 
atoms, consideration of the relativistic contraction of the molecular orbitals can be 
safely omitted. 

The preceding discussion has summarized what needs to be determined to 
characterize a spin-forbidden process. However as noted above the Born- 
Oppenheimer separation of electronic and nuclear motion is to be used in this 
treatment. Thus it is also conceptually and computationally important to ascertain the 
regions of nuclear coordinate space for which it is most important to evaluate these 
relativistic interactions. When one is concerned with spin-forbidden radiative processes 
the relevant region of nuclear coordinate space can usually be specified a priori on the 
basis of the Franck-Condon principle. However when one is concerned with 
radiationless processes the situation is a priori less clear. In general, electronically non- 
adiabatic processes are preeminent in regions of coordinate space for which the 
potential energy surfaces in question are in close proximity or actually cross. The 
efficient determination of such regions has recently been discussed in the context of 
electronically non-adiabatic processes which conserve electron spin (Lengsfield and 
Yarkony 1992). Here we will focus on this question as it relates to spin-forbidden 
processes. For spin-forbidden processes it is necessary to determine the crossing 
hypersurface corresponding to the electronic states with different spin multiplicities. 
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198 D. R.  Yarkony 

This is a surface of dimension N -  1 where N is the number of nuclear degrees of 
freedom and is thus an arduous task. This task can be simplified. It is sufficient, at least 
initially, to focus on the region of the minimum energy point on the crossing 
hypersurface. This point, the minimum energy crossing point, frequently corresponds 
to the transition state for the spin-forbidden reaction. In this case one can take 
advantage of a Lagrange multiplier constrained search algorithm (Fletcher 198 1, Koga 
and Morokuma 1985, Manaa and Yarkony 1991 b) which permits determination of the 
minimum energy point on the crossing surface without prior characterization of the 
crossing hypersurface itself: Focusing on the direct computation of the minimum energy 
crossing point rather than the potential energy surfaces themselves provides con- 
ceptual insights and computational advantages. 

Finally it is appropriate to introduce here how the Breit-Pauli interaction will be 
used. Again it is useful to distinguish two classes of processes, radiative decay processes, 
and radiationless processes including radiationless decay, radiationless energy transfer 
and chemical reactions. In the former case it is necessary to determine the electronic 
wavefunction through first order in perturbation theory 

Y(Z)= YO(Z)+C Y&(K,Z), (1.8) 
K 

where the zeroth-order wavefunctions are eigenfunctions of HO, the non-relativistic 
Born-Oppenheimer Hamiltonian 

(1.9) 
K labels the symmetry of the perturbation contribution, and Yh(K, I )  is determined 
from 

[ H o  - Eo(I)] Yo(Z) = 0, 

[ H o  - Eo(Z)] Yh(K,  I )  = - QHBPYo(Z). (1.10) 

As discussed in detail subsequently the projector Q is used to separate the primary 
space (P) of zeroth-order functions from its orthogonal complement (Q). In the case of a 
radiationless process, a non-adiabatic spin-non-conserving process, one requires the 
intersurface couplings 

HBP(Z, J )  = (Y(I)IHO + HBPIHBPpP(J)) = ( Y O ( Z ) l H B P I  Y ( J ) ) ,  

++z [(Y1(K,Z)IHBPlYO(J))+(Y0(Z)IHBPIY1(K,J))], (1.11) 
K 

where the second approximation is correct to second order. 
Thus in this review we are concerned with the computational description of chemical 

processes whose origin is in the Hamiltonian H"'. We will emphasize the electronic 
structure aspects of these processes but must of necessity pay some attention to the 
dynamics of these processes as well. Our treatment of the electronic structure problem 
is ab initio, that is the basic quantities, integrals and matrix elements, are evaluated 
numerically without reference to experimental data. Excellent reviews of the situation 
in this area up to 1976-1980 are available (Langhoff and Kern 1977, Richards, Trivedi 
and Cooper 198 1). While computational electronic structure theory has made 
enormous progress since that time with advances in, direct configuration interaction 
methods, perturbative methods and post Hartree-Fock analytic gradient techniques, 
important advances have come more slowly in the description of spin-forbidden 
processes in molecular systems. Although recent advances have considerably expanded 
capabilities in this area it is a premise of this review that as a result of previous 
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Spin-forbidden chemistry 199 

computational limitations the electronic structure aspects of spin-forbidden processes 
had received inadequate attention. Thus in this review we will attempt to catalogue and 
explain the recent progress that has been made in this field and illustrate by example 
that which is now computationally tractable. 

Section 2 describes the computational methods used, to evaluate equations 
(1.10,l.ll) and to locate the minimum energy point on a crossing hypersurface. 
Section 3 describes the application of these procedures to problems of chemical interest. 
Section 4 summarizes and concludes. 

2. Theoretical approach 
In the numerical procedures we consider, all N-electron wavefunctions will be 

expanded in a basis of configuration state functions (CSFs) (Shavitt 1976) 
$k(r l ,  ol,. . . rN,  oN) s $k(r, a), where (ri, mi) are the space and spin coordinates of the ith 
electron. Each CSF $ k - 2 s f 1 $ ~ ( M s )  is written as a linear combination of Slater 
determinants 

In equation (2.1) A is the N electron antisymmetrizer, 4 i ( r 1 )  is a molecular orbital, 
y ~ ( a ,  /3) so that 4(rl)y(o,) is a spin-orbital and the implicit R-dependence of 
$(rl)  E 4(rl; R) and hence of t,bi has been suppressed (see below). The fixed coefficients of 
combination Pk,a,a' are chosen so that the each CSF is an eigenfunction of Sz, M ,  and 
carries the Ith irreducible representation of the spatial point group. Thus 

In this review, as above, we will write &(r; R )  = T(Z) when it is necessary to indicate the 
coordinate dependence of a wavefunction. 

2.1. Relativistic wavefunctions: quasi-degenerate perturbation theory 
The determination of the electronic wavefunctions in the presence of the Breit- 

Pauli interaction begins with the solution of the non-relativistic problem in a CSF 
space 

[HO - EO(I)]C(I) = 0, (2.3) 
and we use interchangeably, for notational convenience, C' = C(I). The solutions to this 
equation are then partitioned into two spaces, the primary or quasi-degenerate space 
(denoted P )  and its orthogonal complement (denoted Q). The states in the primary 
space are assumed to be too close, at least at some geometries, for non-degenerate 
perturbation theory to be used. The working equations are then derived using 
partitioning theory (Lowdin 1963) or equivalently a van Vleck or contact transform- 
ation (Lefebvre-Brion and Field 1986). The solution to the electronic Schrodinger 
equation 

( H e  - E)Ya(r; R )  = 0, (2.4 a)  

is expanded as 
N 

(2.4 b) 
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200 D. R. Yarkony 

which yields, in matrix form: 

so that 

(Hpp - E)KP + HpQKQ = 0, (2.6 a) 

[(HPP- E)-HPQ(HQQ- E)-'HQTKP=O, (2.6 b) 

and 

(HQQ - E)KQ = - HQPKP, (2.7) 
where H e  = H o  + HBP, Hpp= PH'P, HQQ = QH"Q, HPQ = PHBPQ and HQP = QHBPP. 
Equations 2.6, 2.7 can be solved iteratively. When the HBp interactions are small an 
approximate solution [E,, Yz] is: 

where K" and VQ are determined from the following equations (Yarkony 1988): 

[Ho - Eo(Z)] VQ(Z) = - QHBPC(I), (2.12) 

(2.13) H&-E, H!: H!: 
= O  

and HEP,=HBP(Z,J) (see equation (1.11)).  When Q is the identity operator it will be 
suppressed. In the applications a slightly different notation will be used which reflects 
the fact that space-spin symmetry can be used to block diagonalize the matrix inversion 
in equation (2.12), so that 

yd(I) = Yo(I) + 1 YA(K,  I ) ,  
K 

and 
[Ha - Eo(I)]VQ(K, I) = - QHBPC(I), 

(2.9') 

(2.12') 

where K labels the appropriate space-spin component of VQ(l) .  
The Yd(I) defined in equation (2.9) are referred to as dressed diabatic wavefunctions. 

The dressed wavefunction is not a pure spin state owing to the 'dressing' Yb(I). This 
term is perturbative and contains contributions only from outside the primary space. 
However, from equation (2.8) it is a linear combinations of the Yd(I )  which are the 
appropriate adiabatic eigenstates of He. Since the Yo(l) are eigenstates of H e  in the 
absence of H B p  it is appropriate to regard Yd(I) as diabatic states which are mixed by 
the potential coupling given in equation (2.13). Thus for the spin-forbidden radiation- 
less processes considered in this work the Yd(I) will be used as a diabatic electronic 
basis with the intersurface coupling provided by H Bp. 
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Spin-forbidden chemistry 20 1 

The solution to equation (2.12) can be formally expanded in the eigenstate basis of 
H o  (Langhoff and Kern 1977) as 

This approach is computationally inefficient owing to the considerable expense 
involved in obtaining the eigenstates of Ho. It has now been obviated by recently 
developed techniques for obtaining the solution of equation (2.12) directly in the CSF 
basis (Pople, Krishnan, Schegel and Binkley 1979, Yarkony 1988). Note that the 
solution of equation (2.12) in the CSF basis is equivalent to the sum over all K in the 
above equation. 

2.2. Radiative processes: transition dipole matrix elements 
We will be concerned with spin-forbidden radiative decay involving two states 

within the primary space and therefore will require the vibrationally averaged 
electronic transition moment between these states. The above characterization of the 
electronic wavefunctions gives rise to two contributions to this quantity, the first an 
intrinsic contribution attributable to the dressing term in equation (2.9) and the 
second, originating in the primary space, attributable to the mixing represented in 
equation (2.8). 

The diabatic state or intrinsic transition moments are given by: 

a ; m  = < m r ;  R)la(r, R)I Y's(r; R)) ,  

= < yb, I k  R)lr(r)l m r ;  R ) ) ,  + < CXr; R)la(r)l ql,.r(r; R))P. 
where p(r; R )  is the total electronic dipole moment operator, 

(2 .14~)  

(2.14b) 

p(r,  R )  = Z,eR, -1 eri 
K i 

and we have evaluated p;,XR) to first order and observed that the zeroth-order 
contributions vanish since the transition is spin-forbidden. 

To evaluate the contributions originating within the primary space explicit account 
must be taken of the method used to describe the nuclear motion including (i) the' 
nature of the potential energy surfaces, whether they are bound or dissociative, and (ii) 
the method of treating the multisurface dynamics, for example whether an adiabatic or 
a diabatic representation is employed. Below is presented a treatment for a bound- 
bound transition in a non-rotating diatomic molecule using a diabatic electronic basis. 
This situation will be encountered in the applications. 

The total or vibronic wavefunctions are determined by expanding solution to the 
Schrodinger equation 

(2.15) [ TN + H e  - E K ]  pi(Y, R )  = 0, 

in a vibronic basis, Xi(R)Yf(r; R)  

(2.16) 

where TN is the nuclear kinetic energy operator, the 
surface vibrational problem 

are the solutions of the single 

CTN + K , ( R ) -  G ~ ( I ) I x ~ R )  = 0, (2.17) 
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202 D. R. Yarkony 

with eigenvalue Ga(Z) and the Bfh satisfy the matrix eigenvalue problem 

[ E  + RBP - EK]BK = 0, (2.18) 
where any intersurface derivative couplings (Lengsfield and Yarkony 1992) have been 
neglected and 

~Zol , z ’a’=81,z ’8a ,a ,Ga(I) ,  (2.19 a) 

@:z’a‘= <Xi(R)<y!(r; R)IHBPIIYId,(r; R))rX;’(R))R(l -81,zt)y (2.19b) 

As a consequence of equation (2.18) the vibronic wavefunctions are specified by a single 
quantum number K and cannot be identified with a single electronic state. However 
when lGa(I)- Gar(Z’) ~ f l ~ ~ z , a f  it is possible to identify a particular solution of equation 
(2.18) with an individual vibronic state, that is KwZa. This aspect is discussed in detail 
in the applications section. 

From equation (2.16) the total vibronic transition moment between states YE and 
YEr is given by 

P K K ,  = < yE(r, R)IAr, R)I yE*(r, N),, R (2.20) 

where 

Equation (2.20) contains contributions from both the intrinsic moments in equation 
(2.14) as well as contributions within the primary space resulting from spin-allowed 
moments whose contribution is only non-vanishing as a result of the state mixing given 
by equation (2.1 8). This point is developed further in the applications section. 

It is straightforward to include the effects of nuclear rotation in the solutions of the 
vibrational Schrodinger equation within a Hund’s case (a) approximation by adding 
the centrifugal term 

J ( J +  1)-522 
V‘$$‘( R) = 

2pR2 

to equation (2.17). In this case the vibrational solutions are labeled xiJ and for example 
the dipole moment in equation (2.21) becomes p(IaJ,  I’dJ’) .  

2.3. Evaluation of matrix elements: spherical tensors 
In order to describe HBp using a CSF basis the essential computational step is the 

evaluation of the matrix element 

(2.22 a) 

(2.22 b) 

Since the CSFs are eigenfunctions of M ,  is convenient to reformulate the matrix 
elements in equation (2.22) in terms of the spherical tensor components of si, si(m), 
m= - 1,0,1 (McWeeny 1965). The Cartesian dot products in equations (1.2) and (1.3) 
can be replaced by their equivalents using spherical tensors. For Hso we have 

(1.2~‘) 1 1 
H~~ = C (- 1)“ hp(m)si( - m) + c h:j’O(m)(si + 2sj)( - m) , 

m =  - 1 i, j 
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Spin-forbidden chemistry 203 

(2.23 a) 

(2.23 b) 

where spherical (w = - 1,0,1) and Cartesian (w = x ,  y ,  z )  vectors are distinguished by 
their arguments and are related by 

40)  = 44, (2.24 a)  

(2.24 b) a( k 1) = T [a(x) rt ia(y)l/J2.  
For Hss we find 

2 
Hss = c (- 1)"c h;;(m)Zij( - m). 

m = - 2  i, j 
(1.3 b )  

Here for the spin-operators which are rank two tensors constructed from products of 
rank one tensors we have 

Zij(0) = C2si(O)sj(O) + si( + 1)sJ( - 1) + si( - l)sj( + l)]/J69 (2.25 a)  

(2.25 b) 

(2.25 c) 

Zij(* 1)=Csi(+ l)sj(O)+s,(O)sj(+ 1)I/J23 

zij( 2 2) = si( rt 1)sJ * I), 
while the spatial components are written as 

Q?(xx) - @yy) k i@j(xy), 2 
h;j( * 2) = 

h;j( k 1) = T [T$(xz) ih:j(yz)], 

&(O) = { ~I$; ( z z )  - [ I$~(xx )  + @(yy)])/J6,  

with 

(2.26 a) 

(2.26 b) 

(2.26 c) 

(2.27) 

and rij, = wi - wj for w = x ,  y or z. 
Since the CSFs are eigenfunctions of M ,  only a single term in the sum on m in each of 

equations (1.2 a') and (1.3 b') can contribute to equation (2.22 b). These contributions 
can be expressed in terms of the basic matrix elements 

HE(w, m) ($AG R)IHSo(w, m)l$j(r; W ) n  (2.28 a) 

f m w ,  m) = <Vw; R)lffSS(w, m)llC/k; m 9  (2.28 b) 
where 

hT(w,m)+x h;y(w,m) , 
i ,  j 1 (2.29 a) 

hT(w, m) = h$(w)si(m), 

hfy(w, m) = h;y(w)[si + 2sj](m), 

(2.29 b) 

(2.29 c) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



204 D. R. Yarkony 

for w=x,y,z and m= -l,O,l and 

HSS(w, rn) = 1 h:j(w, m), (2.30 a)  

h:j(w, m)= h:j(w)ZiJ{m), (2.30 b) 

where w = x2 - y2, xz, 22' - (x2 + y2), yz, xy and m = 2,1,0, - 1, - 2. Here x2 - y 2  and 
22' -(x2 + y 2 )  denote the linear combinations of equation (2.27) appearing in the 
numerator in equation (2.26 a) and in equation (2.26 c) respectively. 

The use of Cartesian rather than spherical tensors for the spatial operators in 
equations (2.29) and (2.30) is dictated by use of Cartesian Gaussian basis functions as 
discussed below. Once equations (2.28a) and (2.28b) have been evaluated it is 
straightforward to determine the corresponding spherical components using equations 
(2.24, 2.26) and, (2.27). Note that from equation (2.24 b) we have 

i, j 

(2.3 1) 
1 1 

(a l s+ j )=  --, and (pls-a)=-. 

2.4. Evaluation of matrix elements: structure factors and molecularlatomic 
orbital integrals 

In order to procede with the evaluation of equation (2.28) it is necessary to specify 
the molecular orbitals to be used to construct the CSFs t,bk and t,bp The choice of 
molecular orbitals is dictated by the following considerations. The matrix elements in 
equation (2.22) can be used in either of the two ways outlined in the Introduction. From 
equations (1.10) and (1.1 1) it can be seen that matrix elements of HBP between CSFs 
corresponding to different molecular orbital spaces may be required. The molecular 
orbitals appropriate for one space may not be appropriate for the description of the 
second space. Two approaches are available to handle this situation. In one approach 
distinct sets of (mutually non-orthogonal) molecular orbitals are used to describe each 
state (Furlani and King 1985). This permits a more compact description of the spaces in 
question. However in this case one is required to evaluate the matrix element of a two 
electron operator in a non-orthogonal molecular orbital basis, an imposing comput- 
ational task. This significantly limits the size of the CSF space which is tractable 
computationally. The alternative approach is to use a common orthonormal basis and 
larger CSF spaces (Hess, Buenker, Marian and Peyerimhoff 1982a, b, Yarkony 1986b, 
Jensen and Yarkony 1987). The use of a common orthonormal basis significantly 
decreases the computational effort required to evaluate the requisite matrix elements. 

In this review we will focus on a technique which uses a common set of orthonormal 
orbitals obtained from a state averaged multiconfiguration self-consistent-field (SA- 
MCSCF) (Docken and Hinze 1972, Werner and Meyer 1981, Diffenderfer and Yarkony 
1982, Lengsfield 1982) procedure. In this case the matrix elements in equation (2.28) can 
be expanded as follows 

J 2  J 2  

(2.32 b) 

where =yf;(m), "oy~rnm.(m), and Ssy;;rnn(m) are the m dependent structure factors and 

!$;(w) = ( ~ ~ ( r l ) l ~ ~ ( w ) l ~ J { ~ l ) ) ~ , ,  (2.33 a) 
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(2.33 b) 

%Jrnn(W) = (4 i (~ l ) rPAr l ) lh~  2(~)l$)rn(r2)4Jn(r,)>r,r~. (2.33 c) 

Some comments on the structure of the integrals in equation (2.33) are appropriate. 
Assuming, as we do throughout this work, that the molecular orbitals are real-valued 
functions of ri then lj;;(w) and @&(w) are pure imaginary-valued quantities and satisfy: 

@(w)= --@(w)= -ilj$w(w), (2.34 a)  

(2.34 b) 

while Ij&,,(w) are real-valued and satisfy the more standard index permutation 
relations 

t>;&iw) = bjin(w) = K&(w) = YZniS,ij(w)- (2.34 c) 

Note that l$;;n(w) # l$:iij(w). The integrals in equation (2.33) are given in the molecular 
orbital basis. They are determined from the. corresponding quantities in the atomic 
orbital basis (xa, a = 1, M )  

4$(w) = (x,trl)lh”l”W)lxa(r1)>,,, (2.35 a) 

f$gn(w) = - @;&(w) = f$j&(w) = - i$Rsoo(w), rjmn 

(2.35 b) 

using standard two and four index transformation procedures and the transformation 

(2.36) 

which as noted above is obtained from the state-averaged-MCSCF procedure. 
Significant advances have been made in the evaluation of the requisite atomic 

orbital integrals over Cartesian Gaussian so that this aspect of the computational 
problem can now be regarded as routine (McMurchie and Davidson 1978, Chandra 
and Buenker 1983a, b). The calculations reported in this review use an approach due to 
McMurchie and Davidson (1978) which exploits advances in the computation of the 
derivatives of standard one and two-electron integrals to facilitate evaluation of the 
integrals in equation (2.35). 

2.5. Evaluation of matrix elements: symbolic matrix element method 
In the symbolic matrix element method developed by Liu and Yoshimine (1981) the 

explicit evaluation of all matrix elements of an operator, the actual matrix elements, is 
replaced by the evaluation of a (small) number of representative or symbolic matrix 
elements together with a prescription for mapping the symbolic matrix elements onto 
the actual matrix elements. Liu and Yoshimine used this approach to treat the non- 
relativistic Hamiltonian H o  and developed the flexible direct CI algorithm used in this 
review (Liu and Yoshimine 1981). We have extended the symbolic matrix elements 
approach to treat Hso (Yarkony 1986b) and I f s s  (Jensen and Yarkony 1987). Below is 
outlined, with the help of some examples, our method for implementing this approach. 

2.5.1. Symbolic bases 
The key conceptual point in the symbolic matrix element method is the 

representation of the CSF space as a direct product based on a partitioning of the 
molecular orbitals into internal and external (or virtual) spaces. In the present 
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206 D. R. Yarkony 

implementation only the external orbitals are treated symbolically. To illustrate the 
procedure we consider a second-order CSF space and ignore spatial symmetry. Then 
denoting a molecular spin-orbital as C j  = 4jyj, there are four classes of CSFs which 
must be represented 

N- 1 

i d ,  (2.37a) 

bd?, (2.37b) 

Here AP is the appropriate antisymmetric, symmetry-adapted projector, the symbol id 
indicates that the vector i ranges over all relevant arrangements and couplings of N 
electrons in the internal orbital space, the symbol b d  indicates that the vector b ranges 
over all relevant arrangements and couplings of N - 1 electrons in the internal orbital 
space and 1 electron in the external or symbolic orbital space, etc. The subscript s on the 
external orbitals in equation (2.37) indicates that &, or pm is a symbolic orbital or spin- 
orbital so that, for example, the pair in equation (2.37 c) &,& is representative of all 
pairs c#J&~ ( M  > N )  in the external space. Similarly the superscript a on the internal 
orbitals t:j indicates that g:j is an actual, not a symbolic, spin-orbital. In the following 
an orbital that may be either actual or symbolic is denoted without a superscript. We 
refer to $; as the yth symbolic CSF in the x symbolic basis. The four symbolic bases 
represented in equation (2.37) are labelled 0-basis, m-basis, mn-basis and mm-basis 
respectively. The flexibility in the choice of the electron distributions among the 
internal orbitals, that is the definitions of the subspaces I ,  B, C, D, permits a priori CSF 
selection in the symbolic matrix element approach. 

2.5.2. Symbolic matrix elements 
Representative or symbolic matrix elements are the matrix elements of a given 

operator between distinct symbolic bases and are partitioned into classes according to 
the symbolic bases involved. For example the (mn, p )  class of symbolic matrix elements 
is given by 

K n c ,  p d w ,  m’) ($,““lH”(~w, m’)l$i> (2.38 a) 

(2.38 b) 

for all CEC and all ~ E B .  Each class of matrix elements is further divided into cases to 
take account of all interactions which are possible between the actual CSFs represented 
by the two bases. In equation (2.38) three cases, that is three sets of structure factors, are 
required for m, n # p ,  m = p and n = p respectively. 

Within a particular class/case it is straightforward to identify the symbolic orbitals 
comprising a symbolic integral with the symbolic orbitals in the distinct symbolic bases 
used to construct the symbolic matrix element. In equation (2.38), if the symmetry 
relations in equation (2.34) are not used, then if 4i or cpk are symbolic orbitals they are 
associated with $?and if 4 j  or 4l are symbolic orbitals they are associated with $:. To 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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illustrate further, for the m, n # p  class all the $&(W) have the form vispsnsia(w) where the 
orbital superscript from equation (2.37) has been included with the index. This 
association of symbolic integral indices with symbolic CSFs, symbolic CSFs-symbolic 
integrals, is the key link in the mapping actual CSFs-symbolic CSFs-symbolic 
integrals-actual integrals which is the crux of the algorithm for constructing the actual 
matrix elements. The remainder of this mapping is discussed below. 

2.5.3. Construction of HBpC' 

elements in equation (2.28) individually but rather constructs the sum 
In order to treat equations (1.10) and (1.1 l), one does not evaluate the matrix 

Again the construction will be illustrated using HY' .  The construction is driven by the 
association symbolic CSFs-symbolic integrals in equation (2.38 b). For this reason it 
is convenient restructure (sort) the contributions to equation (2.38 b) so that all (c, b) 
pairs which give rise to a particular ~ ~ s p . n . i a ( ~ )  are collected and processed together. 
Thus any given I$~spSnBia(~) is processed only one per class/case. The process consists of 
the following: 

(a) symbolic CSFs-symbolic integrals: associating with each symbolic integral 
I$iSpsnsia(w) the corresponding symbolic bases as above, 

(b) actual CSFsctsymbolic CSF and actual integrals-symbolic integral: mapping 
of the symbolic CSF onto actual CSFs and simultaneously mapping the 
symbolic integral onto actual integrals results from using the direct product or 
symbolic association of the symbolic pair mSns with all actual pairs M N  and 
similarly for ps  and P; in other words replacing mn by an allowed M N  defines an 
actual CSF and (two indices of) an actual integral, and 

(c) using (b) all unique interactions associated with a symbolic integral are 
obtained and added to the appropriate components of HssC' by allowing 
( M N ,  c) and (P, b) to range over all actual values. 

To continue our example for the v~8psnsia(~) "y~T;i:$,(m) term in (2.38 b) the 
contribution to the vector 

(HSSCr)MN,c= 1 <I l /?NIHss (W,  m)lIl/b">cib 
P. b 

would be 

Here M ,  N ,  P refer to and range over the actual external orbitals while b and c refer to 
and range over the actual arrangements and couplings of the internal orbitals. The key 
to the power of this approach is that the actual contribution involving yiNPI(w) is 
multiplied by the symbolic structure factor ssyk?$$a(m). In the present implementation 
indexing of ( M N ,  c) and (P, b) causes the actual integrals yiNPi(w) are accessed non- 
sequentially. Hence to assemble HssC' the list of actual Ij&z(w) integrals is partitioned 
into M large disjoint blocks each of which fills the available central processor memory. 
The above described procedure is then applied to each of the M blocks. This approach 
reflects the manner in which HBpC' is used. For example to solve equation (2.12) the 
multiplication HBpC' is performed only once whereas the multiplication involving H o  
must be performed repeatedly. 
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208 D. R.  Yarkony 

2.6. Locating actuallavoided crossing seams and the minimum energy crossing point 
The preceding subsections have considered what must be calculated in order to 

treat a spin-forbidden process. As noted in the Introduction for radiationless processes 
it is also necessary to consider where in nuclear coordinate space spin-forbidden 
electronic non-adiabaticity will be preeminent. Such regions will correspond to actual, 
spin-allowed, crossings of the potential energy surfaces in question. These crossing 
surfaces are of dimension N-1 where N is the number of internal nuclear degrees of 
freedom. Thus their determination is a significant computational task. 

It is reasonable to focus, at least initially, on the region of the minimum energy point 
on the crossing hypersurface, a point which frequently corresponds to the transition 
state for the spin-forbidden reaction. This point can be determined directly without prior 
determination of the crossing surface itseK using a Lagrange multiplier constrained 
procedure (Fletcher 1981, Koga and Morokuma 1985) which minimizes the quantity 
L,,(R, A) = EF(R) + A AE,,(R) where AE,,(R) = E:(R)- EY(R). Minimizing L,,(R, A) with 
respect to R and A yields the minimum on the potential energy surface E:(R) subject to 
the constraint that E:(R) = EY(R). Expanding L,,(R, A) to second order gives the 
following system of Newton-Raphson equations (Fletcher 198 1, Koga and Morokuma 
1985, Yarkony 1990a) 

where GR=R'-R, G A = X - A ,  and the energy gradient gl(R) and 
gradient gIJ(R,  A) are given by 

and the second derivative matrix WrJ(R, A) is given by 

(2.39) 

energy difference 

(2.40 a) 

(2.40 b) 

(2.41) 

The second equality in equation (2.41) suggests the divided difference method we 
presently use to evaluate WIJ(R, A), in which W$(R, A) is determined from a forward or 
centered difference of g$ + Agy. The gradient and energy difference gradient are 
evaluated, without recourse to divided difference differentiation, using analytic 
gradient techniques (Yarkony 1990a). The use of this algorithm is discussed in the 
applications section. 

When the minimum energy point on the crossing hypersurface is not sufficient 
additional points on this surface can be efficiently located by determining the minimum 
of the quantity AE,,(R)'. Expanding AE,,(R)' to second order gives the following 
system of Newton-Raphson equations (Yarkony 1990a) 

.XrJ(R)SR = - CrJ(R), (2.42) 

where the gradient G'-'(R) is given by 

GZJ(R) = 2AE,,(R(gIJ(R), (2.43) 
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and the hessian matrix %‘IJ@) is given by 

From equation (2.43) there are two classes of the solutions to equation (2.42) (i) 
actual crossingsfor which AE,,(R) = 0, and (ii) avoided crossings for which gIJ(R) = 0 that 
is the slopes of the two potential energy surfaces are parallel. The polyatomic 
generalization of the non-crossing rule (Herzberg and Longuet-Higgins 1963) limits the 
dimension of the space in which solutions to equation (2.42) are sought. When the spin 
symmetry of Eo(I) and Eo(J) is different, solutions to equation (2.42) are specified by N -  
1 parameters, that is equation (2.42) is one dimensional. When the spin symmetry is the 
same, solutions to equation (2.42) are specified by N-2 parameters, that is equation 
(2.42) is two dimensional. 

Equation (2.42) can be of particular value in the study of electronically non- 
adiabatic processes which conserve electron spin (Yarkony 1990a, c). Recently it has 
been used in a study of the electronic quenching reaction 

He+H,(B1Z:)+He+H2(X’Z~) 

+He+ H + H, 

to determine a seam of actual surface crossings of two states of the same symmetry 
(Manaa and Yarkony 1990). This represented the first time such a feature had been 
isolated using MCSCF/CI wavefunctions. 

2.7. Propensity for electronic non-adiabaticity 
The crossing ‘seams’ and Breit-Pauli induced couplings, the electronic structure 

data, are the essential input for treatments of the dynamics of radiationless energy 
transfer processes. However considerable insight into the nature of such a process can 
be obtained by considering the electronic structure data in the context of a simplified 
Landau-Zener model (Nikitin 1968,1970, Desouter-Lecomte and Lorquet 1979). This 
analysis provides an estimate of the probability for an intersystem crossing PIc, that is 
the probability of a transition from the Yo(Z) potential energy surface to the Yo(J) 
potential energy surface on a single pass through the crossing PIc = 1 - PLz, where 

PLz = exp [ - (~/4)5], (2.45 a)  

(2.45 b) 

and u is an appropriate nuclear velocity vector. From equation (2.40 b) it is seen that the 
energy difference gradient g”(R), required in expression (2.45 b) is obtained directly 
from the analytic gradient procedure used to locate the minimum energy crossing 
point. 

It is well known that the Landau-Zener approximation overestimates PLz just 
above threshold (Child 1979, Alexander, Parlant and Hemmer 1989) where ua 
approaches 0. However agreement improves rapidly as the energy increases above 
threshold, when compared with exact quantum models, and once the spin-allowed 
channel becomes energetically accessible the Landau-Zener approximation yields 
almost quantitative agreement (Alexander et al. 1989). 
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3. Applications 
In this section we discuss examples in which the computational procedures 

reviewed here are used to address practical problems in chemical physics. These 
examples, chosen from work performed in our laboratory, illustrate the potential of the 
present state of the art methods to address significant questions in spin-forbidden 
chemistry. 

In recent years there have been many ab initio studies of spin-forbidden, dipole- 
allowed radiative decay including studies of OH+ (De Vivie, Marian and Peyerimhoff 
1987), MgO (Yarkony 1988, Thummel, Klotz and Peyerimhoff 1989), He, (Chabalow- 
ski, Jensen, Yarkony and Lengsfield 1989, Yarkony 1989a) and of the 
(b'X+,a'A)+X3X- transitions in NH (Marian and Klotz 1985, Yarkony 1989b), NF  
(Havriliak and Yarkony 1985, Yarkony 1986a, b), and NCl (Yarkony 1987). In this 
review we focus on two examples of spin-forbidden radiative decay. The first, which 
considers the radiative decay process a'A-+X3Z- in CH - (Lengsfield, Jensen and 
Yarkony 1988), was chosen to illustrate the practical importance of solving equation 
(2.12) directly in the CSF basis rather than using the conventional approach of 
expanding the solution in an eigenstate basis. Our second example examines the decay 
of the a3X+ state of NO+, a3Z++X1Z+ (Manaa and Yarkony 1991a). For this system 
recent estimates of the radiative decay rate differ by almost an order of magnitude. This 
system also provides an example of how quasi-degenerate perturbation theory can be 
used to improve the reliability of a calculahon by incorporating potential energy curves 
of spectroscopic accuracy. 

Next we turn to spin-forbidden radiationless decay. There have been several recent 
ab initio treatments of spin-forbidden radiationless decay in, neutral systems NH(A311) 
(Patel-Misra, Parlant, Sauder, Yarkony and Dagdigian 1991), cationic systems, OH+ 
(Marian, Marian, Peyerimhoff, Hess, Buenker and Seger 1982) and 0; (De Vivie, 
Marian and Peyerimhoff 1987) and dications HCIZ+ (Banichevich, Peyerimhoff, Van 
Hemert and Fournier 1988) and HSZ+ (Parlant, Senekowitsch, ONeil and Yarkony 
1991). In this review we consider the decay of NH/ND(c'll) (Parlant, Dagdigian and 
Yarkony 1991). The c1~-a'A transition in this system is frequently used as a laser- 
induced fluorescence probe of NH produced in laboratory and combustion environ- 
ments. Knowledge of the predissociation rate is essential if this transition is to be used 
as a quantitative probe. However it was not known, and it was a matter of some 
controversy, whether NH(c'II, u =0) was predissociated. The resolution of this 
question is presented. 

Finally we consider spin-forbidden chemical reactions. There have been several 
recent ab initio studies in polyatomic systems (Furlani and King 1985, Yarkony 1990b). 
In this review we consider the ground state reaction (Manaa and Yarkony 1991b, 1992) 

CH(X211)+N2(X'Xpf)+HCN(X'C+)+N(4S), (3.1) 

which has long been of interest owing to its importance in the chemistry of planetary 
atmospheres (Strobe1 1982, Berman and Lin 1983) and hydrocarbon flames (Fenimore 
1971, Blauwens, Smets and Peeters 1977, Berman and Lin 1983, Dean, Hanson and 
Bowman 1990). Whereas the Zeldovich mechanism (Zeldovich 1946). 

0(3P) + N,(X1Z~)-+NO(X211) + N(4S), 

N(4S) + 0,(X3Zg-)+NO(X211) + O(3P). 

(3.2 a) 

(3.2 b) 
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Spin-forbidden chemistry 21 1 

successfully accounts for the production of NO in the postcombustion region, it cannot 
explain the production of NO in the flame front. This 'prompt' production of NO is 
thought to involve reaction (3.1). Our discussion of this reaction illustrates how the 
minimum energy crossing algorithm and Landau-Zener analysis discussed in sections 
2.6 and 2.7 can be used to provide a clear conceptual picture of a spin-forbidden 
reaction and set the stage for a computational determination of its rate constant. 

Our presentation has to this point presented Hso and Hss on an equal footing. 
However for the systems to be treated it is possible-frequently for reasons of 
symmetry since the spin portion of Hso is a rank one tensor while that of Hss is of rank 
two-to neglect the Hss contribution compared to Hso at a given order of perturbation 
theory. Thus our treatments of the radiative decay in CH- and NO' and the spin- 
forbidden reaction (3.1) involve only the Hso interaction. However our treatment of NH 
involves the cl l l l  - 1 'C; perturbation. Correct treatment of this perturbation requires 
that Hss be treated at first order while the Hso perturbation which vanishes at first order 
be treated at second order. A similar situation is encountered in treating the fine 
structure splitting of NH(X3C-) (Palmiere and Sink 1976, Yarkony 1989b) and 0, 
(Kayama and Baird 1967). 

3.1. Spin-forbidden radiative decay resulting from coupling to bound states embedded 
in a continuum. Application to the a 'A+X3C-  transition in C H -  

The radiative decay rate for the spin-forbidden dipole-allowed transition 
a'A+X3C-  in CH- was recently measured experimentally using an ICR trap by 
Okumura, Yeh, Normand and Lee (1986). At first glance it would appear that the 
determination of this radiative lifetime should be straightforward using the techniques 
discussed in section 2. However this is not in fact the case. In addition this system 
provides a compelling example of the value of the direct solution of equation (2.12) in 
the CSF basis espoused in section 2 as opposed to the more conventional approach 
which uses a spectral expansion. 

The reason this transition is computationally challenging can be seen from figure 1 
which illustrates that this transition borrows intensity from 311, 'll states embedded in 
the ionization continuum of CH('l7) + e-. Thus the states from which the transition 
borrows intensity are above an arbitrary number of continuum states with the number 
of such states increasing with the size of the atomic orbital basis set. The commonly 
used approach (Langhoff and Kern 1977, Klotz, Marian, Peyerimhoff, Hess and 
Buenker 1983) to determine Yh(I) has been to use the spectral expansion 

(3.3) 

where Y o ( K )  are the eigenstates of I fo .  However for the reasons just noted this 
approach is intractable because of the necessity of obtaining a large number of 
eigenstates, Yo(K) of H o .  Consequently Okumura et al. note in their work that a 
theoretical estimate of the lifetime of the a'A+X3C-  transition in CH- 'would be 
interesting but difficult given the presence of the ionization continuum'. However our 
approach in which equation (2.12) is solved directly in the CSF basis overcomes this 
difficulty since obtaining Yh(I) directly from equation (2.12) gives the correct 
contribution from each eigenstate. 

A second problem relates to the characterization of the molecular orbitals required 
to describe these bound states in the continuum. The standard approach of using the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



212 D. R. Yarkony 

I I I 

I I I I 
CH(~II) + e 

I I I 

I I I 
I 
I 
I I Hs0(31T, a' A) I @('l l ,X3Z-:a'A)~ 

I 1 I 
I I C K  a'A 

I 

I 
I p (311,a1A; X3Z3 

Figure 1. CH-: schematic representation of Hso and dipole couplings responsible for the 
a'A+X3X- transition in CH-. 

variational principle, that is SCF or MCSCF wavefunctions, will be problematical 
owing to the difficulty of constraining these methods to describe highly excited states. 
To address this problem a method was introduced which uses a variant of the iterative 
natural orbital procedure (Bender and Davidson 1966) to obtain molecular orbitals 
appropriate for the description of the bound states embedded in the continuum. The 
general idea behind this approach is as follows. The (occupied) molecular orbitals are 
partitioned into two disjoint spaces 4' = {@i, i = 1, M }  which are needed to describe the 
zeroth-order or reference states, and +'= (&, i = M + 1, M + MP) 
which when added to tjiR describe the perturbed wavefunctions. The (PR are determined 
from a standard SA-MCSCF procedure. The 4' = {& i = M + 1, M + MP) are deter- 
mined from the iterative natural orbital procedure based on the one particle density for 
Y M .  

3.1.1. Theoretical approach 

determine 
From figure 1, to compute the a1A-+X3X- radiative rate it is necessary to 

Y ( X 3 X J  = YO(X3Z:;) + Y1(ll-Il, X3X.;), (3.4 a) 

Y(a A 2) = Y ' (a  A2) + Y (3 Il 2, a' A2), (3.4 b) 

where we have used the notation "+ 'Afi, R = A  + >=, and have observed that for this 
system quasi-degenerate perturbation theory reduces to ordinary first-order perturb- 
ation theory. Only the perturbations that contribute to the a1A-tX3X- spin-forbidden 
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Spin-forbidden chemistry 213 

dipole-allowed transition moment at first order are included in equation (3.4). The 
requisite transition moment is given by (see equation (2.14)) 

p(~'A2, X3C;)=  ( Yo(a'A2)1p+1!P1('l-11, X 3 x ; ) >  

+ (Y'(3n,, a'A,)lp+I y 0 ( x 3 ~ ; ) > ,  (3.5 a) 

= p(alAz; I l l l ,  X 3 X ; )  +p('lI,, U'A,; X3Z; ) .  (3.5 b) 

The wavefunctions in question are characterized in terms of the following principle 
electron distributions: 

YO(X3C -) lo22023021n2, (3.6 a) 

Yo(a'A) lo22023021n2, (3.6 b) 

Y1(311,, a' A,) lo2{ 2 0 3 0 ) ~ l n ~  1 02202302401n:, (3.6 c) 

!P('ll1,x3C;) lo2{ 203aP la3 lo2202302401a. (3.6 d )  

The key point here is the 40 molecular orbital which is not occupied in the principal 
electron distribution contributing to Y 0 ( X 3 C - )  or Yo(a'A) but does contribute 
significantly to Y'(31"I,,a'A,) and Y1('II1, X3C;) .  Thus the procedure used to define 
the molecular orbitals uses Y 0 ( X 3 C - )  and Yo(a'A) to determine the 10-30, and 1n 
orbitals while Y1(3112, a'd,) and Y1('lII,X3Z;) are used to determine the 40 orbital. 

The procedure for determining the molecular orbitals is as follows. For each 
geometry the sequence rq5, Y'(K, Z)] for ( K ,  Z)=(31-I,, a'A,) or ('Ill, X 3 C ; )  is cons- 
tructed. Here Y'(K,  I )  is the solution of equation (2.12) in the molecular orbital basis "4 
and O 4  are the molecular orbitals obtained from a state averaged MCSCF procedure. 
CV, Y'(K, Z)] is determined from r- '4, Y'(K, Z)] by constructing and diagonalizing 
the first-order density matrix corresponding to Y'(K,  I )  to give "$,. '4 is obtained by 
taking the 40 orbital from "$, and the remaining orbitals from "- '4 and orthogonaliz- 
ing (in a manner which preserves the space The iteration chosen as optimal 
was taken as that for which the minimum (largest negative value) of 
EZ(K,  I ) -  (Y ' (K,  Z)lH"l Yo(Z)> is obtained. Separate optimizations were performed for 
the Y1(3112, a'A,) and !P1('lT,,X3C;) perturbations. 

3.1.2. Computational considerations 
The calculations employed extended contracted Gaussian basis sets on carbon 

(1 3s9p2d17s6p2d) and hydrogen ( 1 0 ~ 2 ~ 1 5 ~ 2 ~ )  (Lengsfield et al. 1988). The molecular 
orbitals were determined from two state averaged MCSCF procedures each based on 
the following orbital partitioning: fully occupied orbitals (1 0,20), active orbitals 
(30,40, In, 274 virtual orbitals (50-260, 2%-107c, 1626). In one SA-MCSCF proce- 
dure, denoted SA-MCSCF(4), one state ofeach of 3 X - ,  'Ax, 'A,, 31-Ix, 311r, I l l r n  'II, was 
averaged with weight vector w =(2,1,1,1,1,1,1). In the second SA-MCSCF procedure, 
denoted SA-MCSCF(2) the weight vector w = (2,1,1,0,0,0,0) was used. As discussed 
below SA-MCSCF(4) and SA-MCSCF(2) produce drastically different 40 orbitals, for 
'4. Although electron distribution (3.6) indicates only one nominal l n  orbital, two n: 
orbitals were included in the active space since the singlet coupling of two n-electrons in 
the ulA state requires a somewhat more diffuse a function than the triplet coupled 
electrons in X 3 C - .  
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214 D. R .  Yurkony 

The non-relativistic (zeroth-order) wavefunctions Y 0 ( X 3 C - )  and Yo(alA), and the 
first order perturbation contributions Y1(3112, u1 A,) and Y1('IIl, X 3 C ; )  were ex- 
panded in second-order CSF spaces based on the following orbital partitioning, fully 
occupied orbital (1 o), active orbitals ( 2 0 4 0 ,  17c-24, external orbitals (50-250, 
37c-lOn, 16-26) and truncated orbital (260). The second-order CSF spaces included all 
CSFs (in Czv) symmetry which result from the following distributions of electrons 
among the (full, active, external, truncated) orbitals, (2,6-i, i, 0), i = 0,1,2 and consist of 
130 666 CSFs in 3A, (3Z-) symmetry, 83 046 CSFs in 'A, (,A) symmetry, 129 822 CSFs 
in 3B, ('rIn,) symmetry and 81 904 CSFs in 'B, (Illx) symmetry. 

3.1.3. Results and discussion 
Table 1 summarizes the results of the orbital optimization procedure obtained from 

the two distinct sets of starting SA-MCSCF orbitals, '4. The character of the 40 orbital 
in each of these sets can be seen in table 2 which reports the second moments of 
this orbital. SA-MCSCF(4) produces a very diffuse, valence, 40  orbital while 
SA-MCSCF(2) produces a more compact, correlating, 40 orbital. Table 1, iteration 0, 
shows that the corresponding transition moments, p(Z, J ;  K ) ,  are also considerably 
different at these two starting points with p(ulAz, X3C;)=0.359 x lop3 using SA- 
MCSCF(2) orbitals and p(u'A,, X 3 C ; ) =  0548 X using SA-MCSCF(4) orbitals. 
However despite these differences in the starting point at the end of the iterative process 
the final wavefunctions are largely the same. This can be seen in table 2 from the second 
moments and more significantly in table 1 which shows that the transition moments 
p(Z, J ;  K )  are now quite similar so that p(ulAz, X 3 C ; )  = 0.423 x starting from SA- 
MCSCF(2) and p(a'A,, X 3 Z ; )  =0.453 X lop3 starting from SA-MCSCF(4). 

Table 1. CH-: results from iterative natural orbital procedure? 

SA-MCSCF(2) - I = 'lIZ, J = a'Az, K = X3Z; 
0 -38.438967 - 38.404249 
1 -38.438755 - 38.403990 
6 -38.438244 -38'403414 
7 - 38.438226 -38'403398 

SA-MCSCF(4) - I = 'lIZ, J = u1A2, K = X 3 Z ;  
0 -38.433382 - 38.401 598 
1 - 38.436496 - 38.403539 
4 - 38.436663 - 38.403610 
5 - 38.436685 - 38.403622 

SA-MCSCF(2)-I= ' l I l ,J=X3Z; ,K=~'Az 
0 -38.433967 - 38.404249 
3 -38.438642 - 38.403760 
4 - 38.438627 - 38.403743 

SA-MCSCF(4) - I = 'H1, J = X3Z;, K = u ' A ~  
1 -38-433382 - 38.401598 
8 -38'437314 - 38.40401 3 
9 - 38.437316 - 38.40401 5 

- 0.1321 3( - 6) 
- 0.1 3372( - 6) 
-0.13412(-6) 
-043413(-6) 

-0.13399(-6) 
- 0.13672( - 6) 
-0.13696(-6) 
-043695(-6) 

-0.36136(-7) 
-0.37105(-7) 
-0.37111(-7) 

-0.34232( - 7) 
- 0.36749( - 7) 
- 0.36749( - 7) 

0.4635( - 3) 
0.4883( - 3) 
0.5350( - 3) 
0.5374( - 3) 

0.7147( -3) 
0.6032( - 3) 
0.5607( - 3) 
0.5550( - 3) 

-0.1042(-3) 
- 0.1 132( - 3) 
-0.1143(-3) 

- 0.1 666( - 3) 
-0.1 173( -3) 
- 0.1 161( - 3) 

? All quantities in atomic units at R(CH)=2.15. Eo(I)  =energy of non-relativistic SOCI 

$ Characteristic base 10 given parenthetically. 
wavefunction Yo(Z). E2(Z, J )  = (Y'(1, J)IHSoIYo(J)). 
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Spin-forbidden chemistry 215 

Table 2. CH-: second moments of 40 orbital?. 

SA-MCSCF(2) 0.61 1 2.48 2.49 
~ Y 3 b u 1 A 2 ) t  6.44 22.0 13.8 
Yl(lrIl, X”J$ 417 15.7 12.9 

SA-MCSCF(4) 329 34.4 23.8 

Y1(lrIl, x3z;)g 4.44 16.8 13.2 
W31-b,a1A2)§ 7.18 207 11.2 

t In atomic units, measured from C = carbon, H =hydrogen. 
1 From I N 0  procedure based on SA-MCSCF(2) orbitals using indicated Y 1 ( K , f ) .  

From I N 0  procedure based on SA-MCSCF(4) orbitals using indicated Y1(K,f). 

Table 3. CH-: spin-forbidden dipole-allowed transition moment &‘A2, X3Z;)t. 

R(CH) SA-MCSCF(4) INO$ 

2.05 0.596( - 3) 0.5 10( - 3) 
2.15 0.548( - 3) 0.453( - 3) 
2.25 0.508( - 3) 0.413(-3) 
2.50 0.437( - 3) 0.374( - 3) 

t Atomic units used throughout. 
1 Based on SA-MCSCF(4) orbitals. 

In order to determine the a lAz  + X 3 X ;  spin-forbidden dipole-allowed radiative 
lifetime this procedure was used to determine p(alAz, X 3 X - )  as a function of R(CH). 
The results are given in table 3. For comparison the results obtained with orbitals 
obtained from SA-MCSCF(4) are also reported. These results were used together with 
harmonic potential energy curves based on the spectroscopic constants reported by 
(Manz, Zilch, Rosmus and Werner 1986) to determine the radiative rate, A ( s - l )  

A =2-149 x 10IOC ( h v o v ) 3 ( ~ ~ A ~ p ( a 1 A z V  X 3 Z ; Y l ~ : 3 z - ) ,  
V 

(3.7) 

where hvOv = Go(alA)- Gv(X3X:- )  and p(alAz, X3Xc;) are given in atomic units. Using 
the transition moment function based on the I N 0  [SA-MCSCF(4)] data gives 
z =6*14[4*41] s. In view of the approximation used in these calculations including the 
uncertainty of the spectral data for this system (Manz et al. 1986, Lengsfield et al. 1988) 
an accuracy on the order of 20% for the I N 0  result would be reasonable. The predicted 
value is in excellent agreement with the experimental result z = 5-9( + 08,  - 06) s 
reported by Okumura et al. (1986). Note that agreement with experiment would have 
been less satisfactory (z = 4.41 s) if the I N 0  optimized orbitals had not been used. 

3.2. The spin-forbidden radiative decay using quasi-degenerate perturbation theory: 
application to N O +  

The cations NO’ and 0; are of particular interest in ion chemistry because their 
first excited electronic state is metastable (Kuo, Wyttenbach, Beggs, Kemper and 
Bowers 1990). Thus these ions provide valuable opportunities for the study of the effects 
of electronic excitation in chemical reactions. The NO + molecule, whose electronic 
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216 D. R. Yarkony 

states were systematically reviewed by Albritton, Schmeltekopf and Zare (ASZ) (1979) 
has been the object of considerable experimental (O'Keefe and McDonald 1986, Kuo, 
Beggs, Kemper, Bowers, Leahy and Zare 1989, Fenistein, Heniger, Marx, Mauclaire 
and Yang 1990, Kuo et al. 1990, Marx, Yang, Mauclaire, Heninger and Fenistein 1991, 
Wyttenbach, Beggs and Bower 1991) and theoretical (Werner and Rosmus 1982, 
Chambaud and Rosmus 1990, Partridge, Langhoff 1990a, b) interest in part because of 
its importance (Partridge et al. 1990b) in upper atmospheric phenomena and its 
presence in the bow shock wave of spacecraft re-entering the atmosphere. 

There is considerable uncertainty in the radiative lifetime of the a3C+ state. 
This state decays radiatively by the spin-forbidden dipole-allowed transition, 
a3C: -+X'CO++. Experimental determinations of this lifetime span over an order of 
magnitude. OKeefe and McDonald (1986), using an ion cyclotron resonance (ICR) 
trap and CO, monitor gas, measured a lifetime z =  1*45( + 1.15, -0.45)s. Kuo et al. 
(1990) use a Fourier transform/ICR mass spectrometer and CO, monitor gas and 
found z= 530( + 300, - 100)ms. More recently, Marx et al. (1991) used a triple cell ICR 
spectrometer with two monitor gases Ar and CO, and measured a lifetime z =  100 
(k 20) ms for u b 1 and z = 135( k 25) ms for u b 0. Below is presented a computational 
study of the a3C: +X'C;+ radiative transition. In addition to the obvious need for this 
investigation, this system provides an example of how quasi-degenerate perturbation 
theory can be used to improve the reliability of the determination of a spin-forbidden 
radiative lifetime by permitting the incorporation of experimentally determined 
potential energy curves of spectroscopic accuracy. 

3.2.1. Theoretical approach 
(a) Spin-forbidden dipole-allowed transition moments 
In 2s+ 'An symmetry notation, the first-order perturbed wavefunctions for the a3C: 

and X'ZC,++ states, the dressed diabatic states (equation (2.9')) are given by 

Y(a3C9= Y0(a3C:)+ Yh('n1;a3C:) (3.8 b) 

'Y(XIXO++)= Yo(X'C,o++)+ Y1(3n0+; X'C,o++). (3.8 b) 

Here Q =  1 - Yo(A'II,))( Yo(A'IIl) which indicates that the perturbation of the a3C: 
state of 'II, symmetry is determined in the orthogonal complement of the A'II state. In 
equation (3.8) only those symmetries which contribute to the spin-forbidden dipole- 
allowed transition moment at first order are included. The first-order contributions 
Y1(J; I )  in equation (3.8) are obtained by solving equation (2.12'). 

The perturbations ('dressing') indicated in (3.8) give rise to the following 'intrinsic' 
a3C: -X'C:O++ transition moment (to first order) (see equation (2.14)) 

p(a3Z+, X ' C + )  = (Y(a3X:)lp+ lY(X'C,'+)) 

= ( Y g n , ;  ~~c:)IP+ I~o(x'~O++)> 
+ { Y0(a3C; )lp + I W3n0 +; X ' G +  1). (3.9) 

Equation (3.8) excludes the contribution from the zeroth-order A'II, state. This is 
necessitated by a near degeneracy of the a3Z: and A1H1 states (see below). Within the 
context of quasi-degenerate perturbation theory the AIIIl contribution is in- 
corporated by determining the vibrational wavefunctions for the nominal a3C+ state in 
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Spin-forbidden chemistry 217 

the coupled two electronic state manifold spanned by the a3Z+ and A ' l l  electronic 
states. The coupling is provided by 

H S O ( U 3 Z + ,  A'II)= (u(a3~:)IH""I(A'nl)) 

w (YO(a3C:)IH"~ YO(A'II,)) rH",ou3C+ A1n). 
The vibronic wavefunctions in the a3C+ and A'II electronic manifolds are given by 

equation (2.16) where I = a 3 X + ,  A'II and the xi are the vibrational wavefunctions 
corresponding to Eo(Z). The vibrational wavefunctions were determined in a Hund's 
case (a) basis with J = 1. Although the eigenstates of equation (2.16) are formally linear 
combinations of the vibrational states in each electronic manifold in this instance a 
single ( I ,  v )  state makes the principal contribution to a particular K state permitting the 
association K++(l, v). 

The total spin-forbidden dipole-allowed transition moment between vth vibr- 
ational level of the a3Z+ state and the vth vibrational level of the X'C' state follows 
from equation (2.20) as: 

p(K; x, V)' 1 ~?,A(x;<~(Il)lP+l ~(x'c.,f+))x~lz+) 
I ,  1 

B?,A (X:lp.l(z,X'X'f)lX~lz+), (3.10) 

where Z=a3C+, A ' l l  and K is the solution ofequation (2.18) identified with (u3X+, v'). 
Thus p ( K ;  X ,  v )  =.(A, v'; X ,  v) contains two contributions, one when I = a3Cf,  attribut- 
able to the 'intrinsic' spin-forbidden transition moment p(a3C+; X'C +) given by 
equation (3.9), and a second contribution when I = A'& attributable to 

I ,  A 

p(A1rI, X ' X + )  3 ( Y(A'r IJp+ I Y(x'C;+)) w (YO(A1I-I +)\p+ I YO(X'C+))> 

which results from the mixing of A ' l l  vibronic states into the a3C+ wavefunction. 
The above formulation offers additional conceptual and computational advan- 

tages. The largest relative error in the energetics, and hence in the solution of equation 
(2.12) comes from (see below) the energy difference E0(a3C+)- Eo(A'IT). By 'factoring 
out' the contribution of the A'II state to Y'( ' I I , ,a3Z:)  it becomes possible to 
incorporate, the more reliable, experimental potential energy curves into the treatment 
thereby improving its reliability. In addition neglecting the contribution from equation 
(3.9) to equation (3.10) gives the 'single perturber' model in which the a3C+-+X1C+ 
transition acquires intensity exclusively from the a3X + - A perturbation (Marx et ul. 
1991). 

3.2.2. Computational considerations 
The calculations reviewed here employed either of two contracted Gaussian basis 

sets, Basis1 (14s8p2d18s5p2d) on each atom, and a second larger basis set Basis2 
(14s9p3d19s6p3d) on each atom (Manaa and Yarkony 1991a). The (zeroth-order) CI 
wavefunctions for the X 1 Z + , u 3 Z + ,  b311 and A'IT states and the first-order perturb- 
ation contributions Y&(3110+; X ' X , f + )  and Y' ( ' I I , ;  a 3 X 9  were determined in second- 
order CSF spaces with respect to the following partitioning of electrons in core orbitals 
(kept fully occupied in all CSFs and denoted by [-I brackets) and active orbitals 
(denoted by (-} brackets): 

[ 1 o -~o]~(  30-5 O, 17~-27~) lo. (3.1 1) 
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218 D. R. Yurkony 

In the construction of the 'X', 3 X + ,  311 and 'II CSF spaces the two orbitals with 
highest orbital energies were truncated. In C,, symmetry, this description resulted in 
the CSF spaces of the following dimensions for (Basisl; Basis2) 'C"(480630; 857 850), 
3X+(793 586; 1420 126), 311(791 984; 1 417 136), and 'Il(475 320; 849 288). Preliminary 
calculations showed that the inclusion of the 30 orbital in the active space is required 
for reliable determination of the spin-forbidden transition moments. To date the Basis2 
treatment which involved the determination of Y ~ ( 3 1 1 0 + , X 1 C ~ + )  in a space of over 
1.4 x lo6 CSFs represents the largest expansion used to treat the spin-orbit interaction 
within the context of the full microscopic Breit-Pauli approximation. 

The molecular orbitals were determined from a complete active space (Roos, 1980, 
Roos, Taylor and Siegbahn 1980, Siegbahn, Heiberg, Roos and Levy 1980) SA- 
MCSCF procedure in which the following partitioning of electrons and orbitals was 
used [10-30]~{40-50,1~-2n}~. Four states, 'C+, 3X+, 311 and 'Il were averaged with 
weight vector w = (1,1,2,2). Within the core and virtual subspaces the SA-MCSCF 
orbitals were chosen to be eigenfunctions of the closed shell Fock operator 
corresponding to the SA-MCSCF one-particle density. 

3.2.3. Results and discussions 
The results of the electronic structure calculations are presented in tables 4 and 5 

and represented graphically in figure 2. Table 4 presents the energies of the zeroth-order 
(non-relativistic) X'X', u3X+, b311 and A'II states determined from second-order CI 
(SOCI) expansions. The near degeneracy of the u3C+ and A' I I  states in the vicinity of 
R = 1 . 8 0 ~ ~  is evident from figure 2. Table 5 reports the spin-orbit coupling matrix 
elements 

H","A'II, u3Xf)=  ( Y'O(A'nl)lH""Io(u3C:)), (3.12~) 

W3b311, X'C+)= ( Yo(b3l lO+)~Hso~Yo(X1CO++)) ,  (3.12 b) 

together with the spin-forbidden transition moment p(u3X +, X - X  +) (equation (3.9)) 
and the spin-allowed transition moment p(A'II, X'C +). 

Table 6 compares the spectroscopic constants obtained from the data in table 4 
(using a Morse curve (Townes and Schawlow 1955) fit to the R < 3 . 0 ~ ~  data) with the 

Table 4. NO +: non-relativistic energies? from SOCI wavefunctions. 

RS X'C + a3C + b3H A ' l l  

1.8 -40614 55061 37881 57512 
1-95 - 50708 25426 17709 35517 
2.1 - 50350 9726 9484 25747 
2 4  -36217 0 10138 23964 

- 36202 0 10175 23929 
2.7 - 17940 2442 18464 299 13 
3.0 - 1914 8255 26824 3495 1 
3.3 9222 13823 32524 37298 
4.0 22455 23495 37858 39127 

t Energies in cm-' relative to E ( a 3 C f ) =  - 129.1210692 a.u. (Basisl), E ( a 3 Z + ) =  
- 129,1287333 a.u. (Basis2) at R = 2.4~1,. Results from Basis2 when available below those of 
Basis 1. 

1 In atomic units. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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Table 5. NO+: spin-orbit couplingst and electronic transition moments. 

RS 

1.8 
1.95 
2.1 
2.4 

2.7 
3.0 
3.3 
4.0 

10.9 
14.3 
17.5 
24.5 
24.6 
34.2 
44.9 
505 
52.6 

100.8 
1066 
110.5 
114.1 
1 14.2 
114.4 
112.8 
108.3 
91.7 

-0'3273 
- 0'2695 
-0.2212 
-0.1411 
-0.1375 
- 0.0660 

0.0039 
00402 
0.0316 

p ( a 3 x + , X ' x + )  

-0.3386(-3) 
- 0.2052( - 3) 
-0.1153(-3) 

0.4020( - 5) 
03837( - 5) 
0.88 lo( - 4) 
0.1 706( - 3) 
02136(-3) 
0.1 543( - 3) 

t Hso matrix elements in cm- '; transition moments in a.u. with characteristic base 10 given 

1 In a,. 
parenthetically. Results from Basis2 when available below those of Basisl. 
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Wo) 
Figure 2. NO': potential energy curves, Morse fits to spectroscopic data, for the X ' C + , a 3 X +  

and A ' l l  states. Energies are in cm-' relative to the minimum of the X-2 '  state. Results 
of the Basisl SOCI calculations indicated by open triangles. Also included is 
Hso(A111,a3Xf) again in cm-' with computed values indicated by X .  

recent state of the art theoretical results of Partridge, Langhoff and Bauschlicher (PLB) 
(1990b) and the analysis of ASZ. This table shows that the present computational 
approach provides a good representation of the states in question with the principal 
deficiencies occurring for the energy difference E 0 ( a 3 Z + )  - Eo(A'II) and o , ( A  'll). Since 
the A'II state contribution to p(AIII, X'C') has effectively been factored out by the use 
of quasi-degenerate perturbation theory these limitations can be mitigated by using the 
theoretically determined transition moments and spin-orbit interactions and replacing 
the computed A l n  potential energy curve with a potential energy curve of spec- 
troscopic accuracy determined from experimental data. Note that when the A'II 
potential energy curve inferred from experimental data is used with the transition 
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220 D. R. Yurkony 

Table 6. NO +: spectroscopic constants from SOCI wavefunctionsf. 

State Ref$, 9 re  We T, 

X 1 x  + PW 
BLP 
ASZ 

a3x + PW 
BLP 
ASZ 

b311 PW 
BLP 
ASZ 

A% PW 
BLP 
ASZ 

1.066 
1.075 
1.064 

1.289 
1.300 
1.282 

1.174 
1.183 
1.175 

1.201 
1.206 
1.194 

2354 
2322 
2377 

1318 
1209 
1303 

1687 
1688 
1710 

1469 
1654 
1602 

0 
0 
0 

5023 1 
50979 
52146 

58327 
58692 
59177 

73617 
73288 
73472 

?re in b;, we and T,  in em-'. 
t PW=present work, Basisl from Morse fit to data in table 1. 
tjPLB=(Partridge et al. 1990b); ASZ=(Albritton et al. 1979). 

Table 7. NO': energiest and total radiative ratest of individual vibrational levels of the 
a3Z+ state. 

V C,(a3C') A(a3C+,u; X'C') 

0 647.7 2.20 
2.1 1 

1 1920.4 2.14 
2.45 

2 3 162.8 2.09 
278 

3 4374.9 2.05 
3.12 

4 55567 2.02 
3.45 

t In em- from Morse function fit to spectroscopic constants. 
1 In sec-' with result using complete treatment above result based on single perturber state 

approximation. 

moment data in table 5 the radiative lifetime of the v=O level of the A'II state, (A'II, v 
=O)+X'Z+,  is found to be 55(56) ns which is in excellent accord with the experimental 
value (Huber and Herzberg 1979) given parenthetically and the recent theoretical result 
of PLB of 57-1 ns. 

Using the Basisl data from table 5 and Morse curves derived from experimental 
spectroscopic data (Albritton et ul. 1979) the radiative lifetime z, of the ( a 3 Z + , v )  
+X'Cf transition, zv-' = A(u3Z+,  v) (in s-'), was determined. Table 7 reports the 
results for v = M .  Here 

A(a3C+,v )=C A(K;X'x+ ,v") ,  
V" 

(3.13 a) 
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where K is the solution of equation (2.18) identified with (a3Z+,v), 

A(K; X 3 C + ,  ~")=2*149 x 1010(h~,v,,)3p(~;X1C+, v")~ ,  (3.13b) 

hv,,.. = Gv(a3Z+) - G,,,(X'C+) in atomic units, and p(K;  XIZ+, v") again in atomic 
units is obtained from equation (3.10). We find zv=455, 467, 478, 488, 495ms for 
v =0, 1,2,3,4 respectively. These results are in good agreement with the experimental 
determination of Kuo et al. (1990) who found z = 530( + 300, - 100) ms. The Basis2 data 
reported in tables 4, and 5 indicate that the predicted lifetimes have an uncertainty of 
less than 10%. Thus these calculations strongly support the lifetime measurements of 
Kuo et al. (1 990). 

Table 7 also compares these results with those obtained when the transition 
moment determined from equation (3.10) is replaced by the single perturber state (the 
A'II state) approximation. This approximation is obtained by neglecting the 
contribution to p(K; X'C+, v") from equation (3.9). This model predicts zv = 473,408, 
360, 320, 290 ms for v = 0,1,2,3,4 respectively. While this model is certainly qualita- 
tively correct the predicted v dependence of.7, differs significantly from that of the more 
precise treatment discussed above. The good agreement between the two approaches 
for v = O  appears to be fortuitous. It is attributable to the fact that p((a3Z+, XIZ+) goes 
through zero near r,(a3C+). 

The preceding treatment employs a Hund's case (a) basis and largely ignores the 
effects of molecular rotation. The following analysis shows that a more complete 
treatment does not alter the above conclusions. In the rotating molecule the electronic- 
vibrational-rotational (EVR) basis functions Y?"y are the eigenfunctions of the total 
parity operator (Hougen 1970, Larsson 1981) and are given in terms of Hund's case (a) 
vibronic functions by: 

V,D32:YR(J,M,In=1)+&Y:,:32,,,YR(J,M,n= -111, ~:;:(lnl= 1,&;a3~:)=- [YE" 
1 

(3.14 a) 
4 2  

(3.14 b) 

where the YR(J, M ,  In) are the rotational wavefunctions, normalized D matrices 
(Lefebvre-Brion and Field 1986), and the vibronic wavefunctions Y:,!z: are obtained 
from equation (2.18) with the identification K =(a3Z;, v) as above. For E =  + 1 or - 1 
the functions in equation (3.144 are offor e parity respectively, that is they are total 
parity eigenfunctions with eigenvalues -( - l)J or (- l)J, and will be denoted asf, or e 
states. The functions in equation (3.14 b) are offparity and will be denoted asf2 states. 
The functionsf,,f, and e are molecular eigenstates in the Hund's case (a) limit. However 
molecular rotation mixes the functionsf, and f,, x= C, fi + C\ f,, and in the high J 
limit C\ = Ci = 1 / 4 2 .  

The rotating molecule wavefunctions for the X'C' state Y?",(In =0, e; X'Z,',) are 
of e parity. Therefore dipole selection rules require that the e parity levels of the a3C+ 
state give rise to only P and R branch transitions while thefparity levels give rise to 
pure Q branch transitions. The experimental measurements do not resolve the P and R 
branches so that it is appropriate to sum A factors corresponding to these branches. 
Using this description and neglecting the J ,  Q-dependence of the vibronic transition 
moments in the Hund's case (a) basis (equation (3.10)), the effective transition moment 
p(K ,  p; X, v") from a level (a3C+, v, J, p )  of the vibronic state (a3C+,  v) with angular 
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222 D. R. Yarkony 

momentum J and parity p ( p = e ,  fl, f2) to the appropriate rotational sublevel(s) of 
(X1C+,v” ,Jn,e)  is independent of J and can be obtained from equation (3.10) by 
replacing p(K;  X ,  v”) as follows. In the case (a) limit 

( 3 . 1 5 ~ )  

(3.15 b) 

pw, f2; x,  V’’) = 0, 

p(K, fi; X ,  v”)  = p(K,  e; X ,  v”) = p(K;  X ,  v”)  

and in the case (b) or high J limit 

p(K ,  e; X ,  v”) = p(K;  X ,  v”), ( 3 . 1 6 ~ )  

(3.16b) 

where as above K+(a3C+,  v )  and we have observed in equation (3.15 a) that in the non- 
rotating molecule p((a3&-, X’C,’,) = ( !P(a3C&)~po~ !P(XlC,’+)) = 0. Thus the total 
radiative lifetime given above for a particular (a3C+,  u) level represents the correct 
result in the case of e-parity levels and a lower bound to the true result in the case of 
f-parity levels. In the case (b) limit the lifetime averaged over the parity levels is 
f V  = Czv(e) + z,(f~) + z,(f2)]/3. For (a3X+, v = 0) in case (b) we find zo(e) = 445 ms, zo( f) 
= 910 ms and To = 758 ms. These results again support the lifetime measurements of 
Kuo et al. (1990). 

pw, f1; x,  V’’) = p ( K  f2; x, v”)  = p(K;  x ,  V ” ) / J 2 ,  

3.3. Predissociation of the c l I l  state of N H  (ND):  The role of dipolar spin-spin coupling 
There continues to be great interest in the spectroscopy of imidogen (NH) because 

of the occurrence of this free radical in a wide variety of environments. This species is 
most conveniently probed through its A3H-X3X- and clIG(alA, b’C+) band 
systems, as illustrated by a recent laser fluorescence study of the NH product from 
H + N,. (Chen, Quinones and Dagdigian 1990). Consequently, there has been 
considerable interest in an analysis of the lifetimes of the A3TT state of both NH (Smith, 
Brzozowksi and Erman 1976, Gustafsson, Kindvall, Larsson, Olsson and Jigray 1987, 
Garland and Crosley 1989, Kenner, Kaes, Browarzik 1989, Patel-Misra and Stuhl 
1991), and ND (Kenner et al. 1989, Patel-Misra et al. 1991) and in the c’ll state of NH 
(Smith et al. 1976, Kenner, Rohrer and Stuhl 1989). A decomposition of these 
fluorescence lifetimes into their radiative and radiationless decay components is 
required for the conversion of measured intensities into populations. 

For NH(A311) the predissociation or radiationless contribution to the decay 
process is now reasonably well characterized. Experimental measurements (Smith et al. 
1976) indicated that low rotational levels of the u’=O and 1 vibrational states decay 
only radiatively, with predissociation beginning for N’ = 24 and 12, respectively. 
However, the mechanism of this predissociation process was not firmly established 
until recently. Perturbation of the A313 state by either the 15C- (see figure 3) or X 3 C -  
states had been suggested as the origin of the predissociation (Smith et al. 1976, Smith 
and Hsu 1979, Goldfield and Kirby 1987, Gustafsson et al. 1987). A recent combined 
experimental/theoretical study (Patel-Misra et al. 199 1) has conclusively shown that 
the spin-orbit induced perturbation A3H N 1 5C- is responsible for the predissociation 
of NH A313. Since the lifetimes of the individual A3TT rotational levels are sensitive to 
the shape and location of the 15C- potential energy curve, this study yielded a very 
reliable characterization of the 1 ’X- state. 
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Spin-forbidden chemistry 223 

The material reviewed here builds on this previous study and considers the decay of 
the NH and ND c'n states. The existence of predissociation in c'll was a matter of 
some controversy. At the time of the writing of this review the most recent published 
experimental value (Kenner et al. 1989) of the total lifetime of the u' = 0 vibrational level 
of NH(c'II), averaged over the rotational levels J' = 1-9, was 460 & 20 ns. This 
relatively long lifetime and the absence of any appreciable dependence on rotational 
quantum number J' for 1 < J' < 9 suggested that NH (c'n, v' = 0) is not predissociated 
(Kenner et al. 1989). The u'= 1 level, whose lifetime has also been measured (Kenner 
et al. 1989) as 67 f 7 ns (for J' = 1 4 ) ,  was believed to be strongly predissociated. On the 
other hand, Smith and Hsu (1979) performed a Franck-Condon analysis of the data of 
Smith et al. (1976) and concluded that alllevels of the c'll state were predissociated by a 
very weak (< 0-01 cm ') phenomenological coupling to the 1 5C- state. This conclu- 
sion was by no means certain since (i) the accuracy of Smith's experimental data had 
been questioned (Kenner et al. 1989) and (ii) the 15X- potential energy curve used by 
Smith and Hsu (1979) differs qualitatively from that determined in the study of the A311 
predissociation noted above (Patel-Misra et al. 199 1). 

3.3.1. Theoretical approach 
To address the question of predissociation of the c'n state, ab initio electronic 

structure calculations were used to determine the fluorescence lifetimes of NH/ND 
(c'll,u'=O, 1). Both radiative c'n+(a'A, b'c') decay and radiationless decay via 
the 15C- continuum were considered. Figure 3 presents the potential energy curves 
relevant to the predissociation process. 

The radiationless decay of NH/ND ( c ' n ,  u'J') is attributable to HBP= I f s o  + H". To 
take account of this interaction the wavefunction for the zeroth-order NH ( c ' n ,  u') state 
must be determined in the presence of HBP. Because of the close proximity of the A3n, 
c'll and 1%- manifolds (see figure 3) it is necessary to use quasi-degenerate 
perturbation theory or equivalently a van Vleck or contact transformation (Lefebvre- 
Brion and Field (1986) to evaluate the electronic wavefunctions Y(c'II) and Y(15X-). 
Using 2s+'An notation we require 

Y(c'rI,)= YO(c'rI,)+ Y;(3n1;c'n1)+ Y'(3c:;c'n1) 

~(15c ; )=  ~0(15c; )+  ~;(3n,; 15c;)+ ~y3c:; 1 5 ~ ; )  

= Y O ( C ' l l , ) +  Y'(C'rIl), (3.17~) 

= ~0(15c;)+ ~y15c ; ) ,  (3.17b) 

Y(A3111)= YO(A3ll,), (3.17~) 

where the first-order contributions to Y(A311 ') have been neglected. The perturbative 
contributions Yh(K, I )  satisfy equation (2.12') with Q denoting the orthogonal 
complement of y0(A3n). 

Once the Y(Z) have been determined the nuclear motion problem is solved in the 
three electronic state space consisting of two bound electronic states c'll and A311 and 
the dissociative 1 5Zc- state. This is accomplished as follows. The bound-bound coupled 
state vibrational Schrodinger equation is solved in the vibronic basis: 

(2.16) 
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Figure 3. NH: potential energy curves (full lines) for the A311 (open circles), c'n (open 

triangles), and 1 'E- (open squares) states, and relativistic couplings (dashed lines) 
H""(c'II,, 1%;) (multiplied by 30, solid circles) and Hso(c'IIl, A311,) (solid triangles). 
Symbols denote results of electronic structure calculations. The NH vibrational levels in 
both the A311 and c'II states are indicated. 

where Z=c'II, and A3111, and xf and Bfm satisfy equation (2.17) and equation (2.18) 
respectively and the interstate coupling is given by 

HBP(c'nl, A3nl)= ( Y(c'nl)l~'IY(A3nl)> M ( Y o ( c ' ~ l ) ~ H s o ~ Y o ( ~ 3 ~ l ) )  

=HT(cln,, A3n1). 
Each vibronic state is now formally a linear combination of vibronic states from two 
electronic manifolds. However, each state in question is dominated by a particular ( I ,  a) 
term in equation (2.16) so that it remains appropriate to speak of (c ' l l ,u)  levels. 

The bound levels of the A311-c'II manifold are predissociated by the HBP induced 
coupling to the nominal 1 5C- continuum. This predissociation is described within the 
Fermi 'golden rule' approximation (Kovacs and Budo 1947, Lefebvre-Brion and Field 
1986) 

r 1 2  
kpred(c'n, v'J') = 27~. Bfvz HBP(I, uJ; 1 %-, E, J') , 1 (3.18) 

where L is the solution of equation (2.18) identified with (c'II, u',J'), Z=c'n, or A3111, 
HBP(Z, UJ; 15Xc-, E, J')= ( x ~ , ~ , ( Z ) I H ~ ~ ( Z ,  15C;)IxE,J.(15C-)), ~ ~ , ~ ~ ( 1 5 C - )  is the energy 
normalized continuum wavefunction for the dissociative 15X- level and the J 
dependence has been introduced in a Hunds case (a) approximation as discussed 
below. For Z=A3111 we employ the approximation 
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Spin-forbidden chemistry 225 

while for Z=c'l-I, we use 

(Y(c'lI,)lH"I Y(15C;)) z ( Y o ( c ' ~ l ) ~ H " ~  Yo( 1 5 X  ;)) + 3( Y(c'~,)lHsol Y( 1 ?Z;)) 

x (IPO(c'n,)lH""IO(15C,)> 

x &[( YO(c'n,)lH"~ Y I( 15c;)) 

+ ( Y'(c'l-I1)lH""I'Y0(l5C;))]. (3.19) 

where the second-order renormalization effect has been included (see equation (1.11). 
Equation (3.19) shows explicitly how the first-order dipolar spin-spin coupling, 
H","c'II,, 15C;)- ( Y o ( c ' ~ l ) ~ H " ~ Y o ( 1 5 ~ ; ) ) ,  and second-order spin-orbit coupling, 
HSo(c1lI1, 1 % ; ) ~  1/2(Y(c'l-Il)(H"(Y(15C~)) contribute to the direct c'n, - 1%; 
coupling. 

It is useful to note here that the while Hg(c'II,, 1%;) is obtained from the zeroth- 
order (CI) wavefunctions, evaluation of HSo(c1l-I1, 1%;) is given (to second order-see 
also equation (3.19)) by: 

+ (Y&(3IIl; c'rI1)~H""(0(15C;)), (3.20) 

and thus requires four solutions of equation (2.12'). 
The following analysis shows that for an effective Hss operator (that is equation 

(3.19)) the Hund's case (a) treatment of predissociation given in equation (3.18) is 
appropriate. The predissociative decay rate is expected to be the same for each of the 
c'l-Ie/fA-doublets of a given J'. Since the magnitude of the matrix element in equation 
(3.19) is the same for a= + 1 and - 1, the corresponding matrix element between 
symmetrized Hund's case (a) basis functions will also be independent of the elf label. 
The ro-vibronic wavefunctions for the 1% state are best described in a Hund's case 
(b) basis. Since the predissociation rate kpred should not be strongly dependent on the N' 
values of the final 1% state, the rate for a specific clrI A-doublet level is proportional 
to the square of the effective HSs matrix elements between the initial state and final case 
(b) 1 5C- (J', N') wavefunctions, summed over N': 

For e levels, the sum over N' includes N'=J'  - 1, J '+  1, while forflevels we can have 
N = J' -2, J', J'+ 2. The sum over N' in equation (3.21) is found to be the same for e and 
f levels. This shows that the direct predissociation to the 1%- state should be 
independent of the A-doublet level excited. Moreover, the rate calculated with equation 
(3.21) is the same as that obtained by assuming coupling to a single case (a) 1%; level 
so that the predissociation rate kpred(C'n, u'J') can be determined from equation (3.18). 

To summarize, the NH/ND(c'II, u'J') levels can decay radiationlessly through the 
1% state. Phenomenologically two classes of radiationless decay, that is two 
contributions to equation (3.18), are distinguished (i) direct predissociation of the c'n 
state to the 1 5C- continuum through either first-order dipolar spin-spin coupling, 
H",sc'rI,, 1 %C,), or second-order spin-orbit coupling, Hso(c1nl, 1 %;); and (ii) indirect 
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226 D. R .  Yarkony 

predissociation (Lefebvre-Brion and Field 1986) a quasi-resonant process 
c’II+A3II+l5Z-, in which the C’II state is coupled through Hr(c1111,A311,) to the 
bound levels of the A311 manifold which are in turn predissociated by spin-orbit 
coupling, Hr(A3II1, 1%;) to the 15C- continuum. 

NH/ND(c’II, dJ’) levels can also decay radiatively into the lower electronic states 
I”=(a’A, b’C’). The radiative rate (in s-  ’) for a particular transition 
(c‘II, u’Y)+(I’’, u”J”) was calculated as A(c‘II, u‘J’; I ” ,  d’J’’) = 2.149 x 10‘’ ( h ~ , , ~ , ~ , , ~ , , ) ~  
p(c’II, v’J’; I”, u ” J ” ) ~ .  Here hvu.J,u..J.. = Gu,J,(c’II) - G,..J..(I”), p(clII, dJ’ ;  I” ,  d’J’’) is 
given by equation (2.21) and both are expressed in atomic units. Only transitions 
between states with identical rotational quantum numbers J’ were considered, and 
consequently the total radiative decay rate from a particular ro-vibrational level 
(c’n, u’Y) was approximated as 

krad(C’II, d J ’ )  = 1 A ( c ’ ~ ,  v’J’; I ” ,  u”J’), 
I ” ,  u” 

(3.22) 

where the sum on I” includes the a’A and b’C+ states. 

3.3.2. Computational considerations 
The relativistic couplings were determined from ab initio electronic structure 

calculations which employed a (8s6p4dlf) basis on nitrogen and (5s4p) basis on 
hydrogen (Patel-Misra et al. 1991). The coupling matrix elements that are first order 
in the Breit-Pauli interaction were determined from CI wavefunctions [a second-order 
space relative to a six electron (30,274 active space with the N(1s) orbital frozen] 
developed from a state averaged MCSCF reference. 

The first-order spin-orbit matrix elements H”,”c’II,, A311,) and Hr(A3II2 ,  1%;) 
= J2 Hr(A3II1, 1%;) and the dipolar spin-spin coupling matrix element 
H“,“c’II,, 1 %;) are presented in table 8. The second-order spin-orbit matrix element 
HSo(c’IIl, 15X;) was determined from equation (3.20). However to reduce the 
computational effort required to evaluate this contribution CSF spaces which are first- 
order relative to the above noted active space were used. At R = 3-075 a,, that is vicinity 
of the c’II-15Z- crossing, Hso(e1IIl, 15X;), the second-order spin-orbit matrix 
element, is only 9% of H”,”c’II,,15Z.;) and drops to 5% of H”,”(c’II,,15X;) at R 
= 2.045 a,. On the basis of these estimates HBP(c’IT1, 15Z;)= 1.09 H“,“c’II,, 1%;) was 
used in lifetime computations discussed below. 

The dominance of the spin-spin interaction is the most interesting aspect of the 
electronic structure treatment since this interaction is not usually considered a viable 

Table 8. NH: calculated HBP couplingst and transition moments [p(c ’n,  I”)]$ from SOCI 
wavefunctions. 

1.975 31.67 18.98 0.30 0,224 0.0740 
2.475 31.99 32.195 0.70 0.0879 00308 
2.775 31.69 088 00228 00195 
3.075 29.45 31.29 1.03 0.0 1 66 0.0175 
3.675 18.00 17.66 1.20 0.0527 0.0204 

t In cm-’. 
1 In atomic units. 
Q At R = 2.4251,. 
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mechanism of predissociation (Goldfield and Kirby 1987). However, it should be noted 
that in the X 3 Z -  ground state of NH the fine structure splitting is largely due to the Hss 
interaction (Palmiere and Sink 1976, Yarkony 1989b). 

For the actual calculations functional representations of the potential energy 
curves, Breit-Pauli interactions and electronic transition moments were used. To 
facilitate alternative treatments of the decay processes reviewed in this subsection a 
complete description of these representations is provided. An extended Rydberg curve 
(Murrell, Carter, Farantos and Varandas 1984) was employed for the A3n state. This 
function was fit to Rydberg-Klein-Rees (RKR) points based on the spectrosopic data 
of Brazier, Ram and Bernarth (1986) and to additional electronic structure data (Patel- 
Misra et al. 1991): 

E(A31'I) = Te, + D, - D,(1 + a,p + b,p2 + c,p3) exp (- B2p), (3.23) 

with p=R-Re,= 1.961484a0, Te2=29790.96cm-', D,= 17888.80~m-~, a, 
= 3,693631~; l ,  b, =4.570001~;~, c2 =2.595103a; ,, p2 = 3.693829~; l .  An extended 
Rydberg curve was also used to describe the repulsive 1 5 X  state. The parameters were 
based on a fit to electronic structure data presented by Patel-Misra et al. (1991): 

E( 1 5X -) = Te, + D3( 1 + a,p) exp (- B3p), (3.24) 

with p=R-Re,, Re,=2~141094a0, Te3=29194.85cm-', D3=35543.89cm-', 
a, = 1.053345~; ', / I 3  = 1.964605~; '. The parameter Te, was adjusted to match the 
dissociation energy of the X 3 Z -  state derived from the heat of formation of NH 
(Anderson 1989). It should be noted that no additional adjustment of the 15C- curve 
was made in order to fit the calculated c'n decay rates to those measured 
experimentally. The potential energy curve for the c'n state was fitted to RKR data 
determined from the spectroscopic measurements of Graham and Lew (1978) and data 
for larger internuclear distances provided by electronic structure calculations (Parlant 
et al. 1991). 

E(c'n)= Te, + Dl -Dl(l + a l p +  b,p2 +c1p3 +d,p4+e,p5)exp( -pip), (3.25) 

where p=R-Re,. The parameters of this extended Rydberg curve are: 
Re, =2.0686204a0, Te, =43788.50cm-l, D, =4625.13cm-l, a, =3.010230~;~, 
b,= -0.936945ai2, c1 = -3*630559ai3, d ,  = -3.506326ai4, el =2.560201~;~, 
p1 = 2.783797~; For the b'Z+ and alA potential energy curves Morse, and extended 
Rydberg, functions, respectively were used. These representations were obtained as fits 
to RKR data deduced from spectroscopic measurements (Graham and Lew 1978, Ram 
and Bernath 1986, Hack and Mill 1990, Nelson and McDonald 1990): 

E(b'X+)= Te,+D,[l -e~p(-~,(R-Re,))]~, (3.26) 

where Te4=21202~00cm-', D4=37845.45cm-', j4= 1.076770a;l, and Re, 
= 1.957800a0, and 

E(alA) = Te, + D, - D5( 1 + a,p + b,p2 + c,p3) exp (- P5p), (3.27) 

with p=R-Re,, Re,= 1.962903a0, Te,= 12699.85crn-l, D,=37612.01 cm-', 
~5=1.944929~;', b, =0.767445ap2, ~,=0.314114~;~,  B5 = 1.961796~;'. 

The transition moment functions p(clll, Z") Z"=ulA and b'Cf, required for the 
calculation of the radiative transition rates, were obtained from the data reported in 
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228 D. R. Yarkony 

table 8 and additional electronic structure data presented elsewhere (Yarkony 1989b) 
and fit to the functional form: 

~(c'II, Z") =a + bR + cR2, (3.28) 

where a = 1.229299, b = -0.696106, and c = 0094475 for I" = a'A and a = 0.53988 1, 
b =  -0.355365, and c=0.060917 for I"=b'Z+, all atomic units. 

Hy(A3n2, 1 5x;) =D, eXp [ -Ps(R - Re6)2], (3.29) 

where Re, =2.786021a0, D6 = 34-00cm-', and P6 =0455071a; '. Hs,"(c'n,, A 3 n , )  was 
represented by a spline function fit to the data in table 8 and the asymptotic (R = 50a0) 
value 2.97cm-'. H","clII,, 15CJ was fitted to: 

H","c'II,, 15C;)=Te7-D,exp(-P,R), (3.30) 

H","A3112, 15X;) was fitted to: 

where Te7= 1.49cm-', D7=6.10crn-', and /j7=0.824646a;'. 

3.3.3. Results and discussion 
We now turn to the numerical treatment of the radiative and radiationless 

decay processes. Table 9 reports the calculated transition moments and transition 
probabilities for resolved vibronic transitions involving NH/ND(c'll, u' = 0,l). 
Nelson and McDonald (1990) have reported ratios of decay rates 
A(c'll, u'; a'A, v")/A(c'll, u'; a' A, u" = 0) for NH(c'll, u' = 0,l). The ratios calculated 
from the data given in table 9 are in very good agreement with their experimentally 
measured values. 

The calculated radiative, predissociative, and total decay rates for NH(c'II, dJ') 
and ND(cllI, dJ ' )  levels are presented in tables 10 and 11. The calculated radiative and 
total lifetimes for NH(c'II, u' = 0, J'), are plotted as a function of J' in figure 4 where they 
are compared with the experimental results of Kenner et al. (1989). It can be seen that 
the radiative decay rates decrease as a function of increasing rotational quantum 
number J'. This reflects the fact that the electronic transition moments for both 
radiative decay pathways, that is the c'II+a'A and c' l l+blC+ transitions, decrease 
with increasing internuclear separation (see table 8). The predissociative decay rates are 
significant for all NH(c'II, u'J') levels and increase rapidly with increasing J' and u'. The 
net effect is that initially the total decay rate is largely independent of J' and then begins 
to increase. This situation is to be contrasted with that in NH(A3n, v'=O and l), where 
absence of a J' dependent lifetime (for low J') was associated with the absence of 
predissociation (Patei-Misra et al. 199 1). 

The prediction of a limited J' dependence for the v' = 0 total lifetime and its value 
(averaged over the range J' = 1-9) of 462 ns are in excellent agreement with Kenner 
et al., who found 460 & 20 ns for the lifetime of the (similarly averaged) u' = 0 level. For 
the strongly predissociated c'n u' = 1 level, agreement between the predicted lifetime 
62 ns (averaged over J' = 1-4) and the (similarly averaged) experimental value (Kenner 
et al. 1989) 67 & 7 ns is again quite good. 

Analysis of the computed predissociation rates shows that the direct mechanism 
makes the largest contribution to the radiationless decay of both the u'=O and 1 levels. 
Thus in a qualitative sense, direct coupling of the c'n state to the dissociative 1%- 
state with a strength sufficient to explain the well established predissociation of 
WH(c'l3, u' = l), approximately 1 cm- requires that the u' = 0 leuel in N H  also exhibit 
measurable predissociation. 
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Spin-forbidden chemistry 229 

Table 9. Calculated transition moments [~(c'n, 0'; Z"v")]f and radiative transition probabilities 
[A(c'n,v';  I",v")]$ from thec'll state to the I"=(a'A, b'Z+)lower electronic states for the hypothetical 
rotationless state$ for NH and ND. 

I"vn NH(V' = 0) NH(v' = 1) ND(v'=O) ND(v'= 1) 

a'A, v"=O 
a'A,v"=O 
a' A, v" = 2 
a' A, v" = 3 

b' C + , V" = 0 
b iz+,  v"= 1 
b'Z +, V" = 2 
b1C+,v"=3 

a' A, v" = 0 
a' A, v" = 1 

alA, v" = 2 

a' A, v n  = 3 

b 'Z+, 0'' = 0 
b'Z+,v"=l 
b Z +, V" = 2 
b'Z ', u'' = 3 

A 
A 
A 
A 

0.1736 
00434 

- 0.0073 
- 0.0006 

0.0577 
0.0138 

- 0.0035 
-0~0010 

1.760 
7.911(-2) 

Calc.7 4.5( - 2) 
EXPt.tt (4.3 f0.8)( - 2) 

1.578( - 3) 
Calc.7 9.q - 4) 

Calc.7 
EXPt.tt 

EXPt.?t (5.7 f 1.3)( -4) 
6.432( - 6) 

7.256( - 2) 
2.587( - 3) 
9.762( - 5) 
4.507( - 6) 

-0.1153 01704 
0.0980 0.0602 

- 0.0496 00154 
-00120 - 0.0030 

- 0.0384 0.0565 
0.0336 0.0192 

- 0.01 72 0g057 
- 00068 - 0.00 16 

9.492( - 1) 1.714 

0.53 
0.55 f 0.10 

0.098 
0.11fO-02 
3.864( - 3) 
4.1(-3) 

5.044( - 1) 1.685( - 1) 

9.349( - 2) 8.578( - 3) 

2.483( - 4) 

(3.1+0.7)(-3) 

4.249( - 2) 7.108( -2) 
2.121(-2) 5.8 16( - 3) 
3.474( - 3) 3536( -4) 
3.186(-4) 1.921( - 5) 

-0121 1 
0.0933 
0.0663 

- 0.0245 

- 00404 
0.03 17 
002 19 

- 00096 

1.01 1 
4.779( - 1) 

1.905( - 1) 

2.029( - 2) 

4.481(-2) 
2.019(-2) 
6.864( - 3) 
9142(-4) 

t In atomic units. 
$In W s - ' .  §J'=J''=~. 
11 Entries given with characteristic base 10 in parentheses. 
7 Ratios of transition probabilities from this work. 
tt Experimental ratios from (Nelson and McDonald 1990). 
$$ Relative radiative transition probabilities A/A(v" = 0). 

Table 10. Calculated radiative, predissociative, and total decay rates for the c l l l  state of NH.? 

v'=O v'= 1 

J' krad kpred z-1 krad kpred 7-1 

1 1.911 0.238 2.149 1.614 14.101 15.175 
2 1.902 0.248 2.150 1.604 14.419 16.023 
4 1.867 0284 2151 1569 15.564 17113 
6 1.813 0.352 2.165 1.515 17.458 18.973 
8 1.740 0.467 2.207 

10 1.650 0.658 2.308 
12 1542 0959 2501 

t In units of 106 s-'. 
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230 D. R. Yarkony 

Table 11. Calculated radiative, predissociative, and total decay rates for the c'll state of ND.? 

u'=O u1 = 1 

J' k,, kpred 7-1 krad kpred 7-1 

1 1.966 0017 1.983 1.771 2.336 4.107 
2 1.96 1 0.0 1 7 1.978 1.766 2.386 4.152 
4 1.942 0.020 1.962 1.747 2.559 4.306 
8 1.873 0.033 1.906 1.680 3.409 5.089 

12 1.764 0.065 1.829 
14 1.695 0.097 1.792 
16 1.616 0.154 1.777 

t In units of 106s-'. 

600 

550 

h 

v) 
C - 500 

400 

350 

0 2 4 6 8 10 

J' 

Figure 4. NH. Radiative (dot-dashed line) and total (dashed line) lifetime of the u'=O level of 
NH(c'n) as a function of the rotational quantum number J'. The full circles represent 
experimental lifetimes from (Kenner et al. 1989). 

From table 11 it is seen that the predissociation decay rates are substantially smaller 
for the corresponding ND levels, demonstrating the role of quantum mechanical 
tunnelling in this process. The calculated lifetime for ND(clII, u' = 0, J' = 1) is 504 
f 1 ns, with predissociation making a negligible contribution. Since the low rotational 
levels of ND(c'II, u' = 0) are not predissociated, an experimental measurement of the 
lifetime of ND(clII, u'= 0) can provide a critical assessment of this prediction. Very 
recently an experimental determination of the total lifetime of NI)(c'II, u' = 0, J' = 1) 
has been reported (Bohn, Stuhl, Parlant, Dagdigian and Yarkony 1992). The measured 
value z = 500 ns for ND(c'I'I, u'= 0, J' = 1) provides striking confirmation of the 
predictions of this subsection. 

3.3.4. Summary 
The most significant conclusions of this study are summarized below. A direct 

relativistically induced clH- 15X- perturbation of magnitude approximately 1 cm- ' 
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Spin-forbidden chemistry 23 1 

accounts for the experimentally observed (almost complete) predissociation of the 
u'= 1 level in NH. Then given only the requisite potential energy curves and this 
phenomenological coupling, it necessarily follows that 10% of the observed decay of the 
NH(c'II, u' = 0) level is due to predissociation. Electronic structure calculations show 
that this coupling is attributable principally to the dipolar spin-spin interaction, with a 
smaller contribution from the second-order spin-orbit interaction. Although the low J 
levels of NH(c'n, u'= 0) are predissociated, the total decay rate is independent of J' for 
J'= 1-9 because of a fortuitous cancellation of the J' dependence of the radiative and 
non-radiative decay rates. Thus the absence of a significant rotational dependence in 
the decay rate is not an unambiguous indication of the lack of predissociation. As in the 
case of the predissociation of NHA311, the predissociation of the c l l l  state is 
attributable to quantum mechanical tunnelling and consequently this decay process is 
of reduced importance in the corresponding levels of ND. It was predicted and very 
recently confirmed that measurement of the fluorescence lifetime of ND(clll, u' = 0) will 
give the pure radiative decay rate for the c'n state. 

3.4. The spin-forbidden chemical reaction: 
CH(X%) + N,(X'X,+)+HCN(X'C+) + N(4S) 

CH(X211)+N2(X1Xl)-+HCN(X1C+)+N(4S) (3.1) 

The ground state reaction 

is of considerable importance in the chemistry of planetary atmospheres (Strobe1 1982, 
Berman and Lin 1983) and hydrocarbon flames (Fenimore 1971, Blauwens et al. 1977, 
Berman and Lin 1983, Dean et al. 1990). Whereas the Zeldovich mechanism (Zeldovich 
1946) 

O(3P) + N,(X'X~)+NO(XZn) + N(4S), (3.3 1 a)  

N(4S)+ 0,(X3Xg-)+NO(X211)+ O(3P), (3.31 b) 

successfully accounts for the production of NO in the postcombustion region, it cannot 
explain the production of NO in the flame front. This 'prompt' production of NO is 
thought to involve reaction (3.1) (Fenimore 1971, Berman and Lin 1983, Miller and 
Bowman 1989, Zabarnick, Fleming and Lin 1991). The general features of the potential 
energy surfaces involved in this reaction are illustrated in figure 5. This reaction is spin- 
forbidden. In the reactant channel the ground electronic state is a doublet while in the 
product channel it is a quartet. However this reaction is of potential importance 
because it provides a comparatively low energy pathway for the breaking of the 
nitrogen bond by a hydrocarbon radical (Berman and Lin 1983). 

Experimental measurements of the pressure dependence of reaction (3.1) suggest 
that this reaction proceeds through an intermediate complex, N,CH, on the lowest 
doublet potential energy surface (Bosnali and Perner 1971, Wagal, Carrington, Filseth 
and Sadowski 1982, Berman and Lin 1983, Dean et al. 1990). The reaction can then 
occur despite a small probability for intersystem crossing by repeatedly traversing the 
doublet-quartet crossing hypersurface (Tully 1974, Zahr, Preston and Miller 1975). A 
similar mechanism has been proposed for the spin-forbidden oxygen quenching 
reactions (Tully 1974, Zahr et al. 1975) 

O(lD) + N,(X1Xl)+N,0*+0(3P) + Nz(XIXl), (3.32 a)  

(3.32 b) 0('D) + CO(X1X')+CO;+O(3P) + CO(X'X+). 
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232 D. R. Yarkony 

CH (a4Z)+N/ 

17 

70 HCN+ N(*D) 4k 56 

40 

10 

HCN + N( 4S) 

1'1-1. 

Figure 5. CH+N,: schematic representation of the 'A" and 4A" potential energy surfaces. 
Indicated energetics, in kcal (mol- '), see table 12. The structures indicated are 
MIN(dative), MIN(CZV) and MEX(C,,) and are defined in table 12. 

At present the rate constant for reaction (3.1) is not well characterized with recent 
measurements having reported considerably different A factors, A = 6 3  x 10' ' (Lin- 
dackers, Burmeister and Roth 1990) and 4.4 x 10" (Dean et al. 1990) and activation 
energies, Ea = 14 kcal mol- ') (Lindackers et al. 1990) and 22 kcal mol - (Dean et al. 
1990). In this subsection it is shown how the methods presented in section 2 can be used 
to obtain a clear conceptual picture of reaction (3.1) and thus set the stage for 
calculations of the rate constant for this reaction. The treatment reviewed here-which 
used exclusively multireference CI wavefunctions (1  50 OOG3 800 000 CSF expansions) 
based on double zeta polarization, and triple zeta double polarization, basis sets- 
focused on two key aspects of the above proposed model. The existence of a local 
minimum on the lowest doublet potential energy surface which can facilitate reaction 
(3.1) was demonstrated. Secondly the feasibility of an intersystem crossing in the 
vicinity of the energetically accessible regions of the doublet-quarted crossing 
hypersurface was demonstrated by determining the minimum energy point on the 
doublet-quartet crossing hypersurface and analysing the intersurface (spin-orbit) 
coupling in this region. For this system the lowest doublet-quartet potential energy 
surface is of dimension five. Thus the constrained, analytic gradient driven, search 
algorithm, which enables determination of a minimum energy crossing of two potential 
energy surfaces without explicitly characterizing the crossing hypersurface itself, was 
essential. This treatment provided the first instance of a minimum energy crossing 
point obtained from multireference CI wavefunctions based on an analytic gradient 
driven implementation of the Fletcher algorithm (Fletcher 1981). The pioneering use of 
this approach had been reported by Koga and Morokuma using SCF wavefunctions 
(Koga and Morokuma 1985). 

3.4.1. Computational approach 
It is both conceptually and computationally convenient to assume a plane of 

symmetry in the calculations. Test calculations showed that this constraint should not 
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Spin-forbidden chemistry 233 

affect the conclusions reported here. In C, symmetry the lowest doublet and quartet 
potential energy surfaces are respectively the 1 ’A” and 14A” potential energy surfaces 
(see figure 5). These potential energy surfaces will be characterized using multireference 
CI wavefunctions. Two basis sets will be used. Basisl consists of standard Huzinaga- 
Dunning (Dunning 1971) contracted Gaussian double zeta polarization basis sets on 
carbon (4s2pld), nitrogen (4s2pld) and hydrogen (2slp). Basisl will be used in the 
geometry optimizations performed in this work. A larger triple (plus) zeta double 
polarization basis, Basis2, consisting of carbon (6s4p2d), nitrogen (6s4p2d) and 
hydrogen (4s2p) will be employed to provide a more precise characterization of the 
energetics at the extrema discussed here. 

The most reliable CI wavefunctions considered here employ a six-electron, three- 
orbital, core orbital space and a fifteen-electron, nine-orbital, active orbital space which 
in C, symmetry is given by 

(la~’-3a’2)(4a’-lOa~, la”-2a”)15. (3.33) 

The core space includes only the carbon and nitrogen 1s orbitals. The active space 
corresponds to the CH(2-30, ln} and N2{2-30,,20,, 1nU> orbitals in the reactant 
channel and to the HCN(N(2s), CN(o, n), HC(o)} and.N{2s, 2p) orbitals in the product 
channel. Approximate second-order configuration interaction (SOCI) wavefunctions 
based on electron distribution (3.33) and Basis2, denoted SOCI(a) wavefunctions, will 
be used in this work and are of dimension 3 819 242 (4A”) and 3 367 716 (’A”) in C, 
symmetry. In these expansions the 11 orbitals with the largest orbital energies were 
truncated and some classes of non-interacting space configurations were excluded. 

It is computationally expedient to base the geometry optimizations reported here 
on SOCI wavefunctions corresponding to the electron distribution 

( l~’’-5~’~)(6~’-10~~,  1 ~ ” - 2 ~ ” ) l ~ ,  (3.34) 

which differs from the electron distribution (3.33) in that two additional orbitals are 
treated as core orbitals. The resulting Basisl, SOCI expansions, which are referred to as 
SOCI(b) expansions, are of dimension 31 1 780 (4A”) and 395 058 (’A”) in C, symmetry. 
In these expansions the five orbitals with the largest orbital energies are truncated. 

In all cases the molecular orbitals used to develop these wavefunctions were taken 
from complete active space SA-MCSCF calculations based on electron distribution 
(3.34) in which one ’A” state and one 4An state were averaged with equal weights. At the 
reactant arid product channel asymptotes it was found necessary to include two 
additional totally symmetric orbitals in the core orbital space to avoid convergence 
problems attributable to redundant variables. 

The need for this sophisticated treatment of the electronic structure problem can be 
attributed to the breaking and forming of multiply bonded moieties, N = N and C = N, 
respectively. Although the need to characterize such structures considerably compli- 
cates the electronic structure calculations it is precisely this aspect of the reaction which 
results in the favourable energetics noted above. 

3.4.2. The spin-orbit interaction 
In the double group corresponding to C, symmetry the 4A” and ’A“ wavefunctions 

each carry degenerate irreducible representations, Kramers doublets (Tinkham 1964). 
The following pairs of non-relativistic, zeroth-order, wavefunctions can be used to span 
these degenerate representations (i) Yo[zA”(1/2)], YoC2Ar’( - 1/2)], (ii) iY°C4A”( 1/2)], 
iY°C4A”( - 1/2)], and (iii) iY0[”A”(3/2)], iY0C4A”( - 3/2)], where the M, value has been 
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234 D. R .  Yarkony 

Table 12. CH+N,: structures of local minima on the 'A" potential energy surface and the 
A"-4A" crossing surface from SOCI(b) wavefunctionsi. 

R(") 1.143 1.735 2.221 1.78 1 
R W )  1.082 1.07 1 1.076 1.062 
R(CN') 1.340 1.311 1.297 1.149 
R(CN,) 2.40 1 1.311 1.367 2.930 

LHC" 110.88 138.55 129.29 180.00 
LHCN, 124.53 138.55 12472 18000 

E ( ~ A " )  - 147.528640 - 147.538182 - 147'497787 - 147.441869 
E(4A") - 147.497787 - 147.441869 

t Distances in A, angles in degrees, energies in Hartrees. 
$ For com arison the following ground state equilibrium distances are summarized: CH: 

HCN: r,(CH)= 1.066 A, r,(CN)= 1.153 A. (Chase Jr., Davies, Downey, Frurip, McDonald and 
Syverud 1985). 

r,(CH)= 1.12 B (Huber and Herzberg 1979); N,: r,(N,)= 1.098.& (Huber and Herzberg 1979); 

"t 

I 

Figure 6. CH + N,: MIN(dative). Dative minimum; geometrical parameters are described in 
table 12. Possible path to interconvert to MIN(C,,) indicated by arrows. 

t" 
I N '  

N' 

Figure 7. CH + N,: MIN(C,,) and MEX(C,,) C,, minimum and Czv minimum energy crossing 
point; geometrical parameters are described in table 12. 
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given parenthetically. In this case all non-vanishing matrix elements connecting the 
components of the 4A’f and ’A” states can be expressed in terms of the single real-valued 
matrix element (Rose 1957) &’(‘A’’, ’A”)= (iYo[4A’f(3/2)])H”JY[2A‘’(1/2)]) which 
will be reported here. 

3.4.3. Local extrema on the 1 ’A” potential energy surface 
Table 12 and figures 6 and 7 present the geometrical structures corresponding to 

local minima on the ,Aff potential energy surface determined at the SOCI(b) level. The 
local minimum labelled MIN(dative) in table 12 and pictured in figure 6 represents a 
datively bonded structure in which N, donates a pair of electrons to the empty CH(l.n) 
orbital. This can be thought of as a reactant channel structure since the N-N and C-H 
bond lengths are similar to those in the isolated molecules (see footnote in table 12). 
From table 13 this point on the ’A” potential energy surface is stable by 
20.2 kcal(mo1)-’ relative to the doublet asymptote in the reactant channel. In the 
reactant channel the doublet-quartet energy separation corresponds to T,[CH(a4C -)] 
and is given in table 13. However at MIN(dative) the 4A” state has been considerably 
destabilized relative to the ’A” state, E(”A”)-E(’A”) = 59.2 kcal (moI)-’. This is readily 
understood since as a result of the formation of the dative bond one of the partially 
occupied non-bonding orbitals in the reactant channel 4A“ state becomes an 
antibonding orbital. 

The second minimum on the ,A’’ potential energy surface is seen from table 12 and 
figure 7 to have C,, symmetry, although this constraint was not imposed on the 
calculation. From table 13 this point on the ’A” potential energy surface is stable by 
22.3 kcal(mol)-l relative to the doublet asymptote in the reactant channel. As 
previously the 4A” state is considerably destabilized relative to the 2A” state with E(‘A”) 
- E(’A”) = 93.5 kcal (mo1)- ’. This is attributable to the N-N bond distance which 
although stretched by over 0.6A relative to re(N2) is short compared to that in the 
otherwise geometrically similar minimum energy crossing structure discussed below. 
As a result of the comparatively short N-N bond distance the N,(ln, = n*) antibonding 
orbitals required for the 4A’r wavefunction are destabilized. 

3.4.4. Local extrema on the doublet-quartet crossing hypersurface 
Table 12 presents the nuclear configurations corresponding to solutions of 

equation (2.39) obtained from a general C, geometry search and a C,, restricted 
geometry search, each based on SOCI(b) wavefunctions. The energies of the states at 
these geometries obtained from SOCI(b) wavefunctions are also given in table 12. These 
results illustrate the gratifying observation that our algorithm for the solution of 
equation (2.39) routinely obtains states which are degenerate to less than 2 0  x a.u. 

From table 12 it is seen that the structure obtained from the general C, geometry 
search has approximate C,, symmetry. The small deviation from C,, symmetry may 
not be relevant since the active space used in the SA-MCSCF procedure results in a 
broken symmetry solution using C, wavefunctions at C,, geometries. These nuclear 
configurations will be referred to as the C,, and C,, minimum energy crossing 
structures and collectively as the crossing structures. They will be denoted as MEX(C,,) 
and MEX(C,,) respectively. Note from table 12 that the bond distances of the HCN 
moieties, particularly those for the C,, structure, strongly resemble those of isolated 
HCN so that the doublet-quartet crossing hypersurface is a feature of the product 
channel. 
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Table 13. CH +N,: energetics of 4A“ and ’A” states from SOCl(a) wavefunctionst. 

Structure E( A“) E(4A“) HS0(4A”, 2A”)I 

1. CH+N, O.qA)[ 0.01 

2. MIN(dative) - 20.2(A) 

- 147.68274 

- 147.71492 

3. MIN(C,,) - 22.3(A) 
- 147.71824 

4. MEX(C,,) 5 1.5(B) 
- 14761615 

5. MEX(C,,) 1 1.q B) 
- 147.68002 

6. HCN+N 53G(A)[56.2] 
- 147.59829 

134(A)[ 16-71 
- 147.66140 

38.9(A) 
- 147.62065 

7 1.2(A) 
- 147.56923 

52.6(B) 41.9 
- 147.61435 

9.5(B) 12.5 
- 147.68310 

12( B)[ 1.21 
- 147.69631 

~ ~~ 

t Upper values in kcal (mo1)- ’ relative to reference A or B noted parenthetically. Reference 
A=E(’A”)= - 147-68274 a.u. and represents the energy of CH(XZll)+ N,(X’Z:) evaluated 
at corresponding equilibrium geometries. Reference B = E(4A”)= - 147.69631 am. 
- 1.2 kcal (mo1)- ’ represents the energy of HCN(X’C+) + N  evaluated at the corresponding 
equilibrium geometry and adjusted to reproduce the experimental AEe. Lower values are the 
actual SOCI(a) energies in Hartrees. Corresponding values derived from experimental data given 
in square brackets. The following experimental data was used: T,(a4C-) for CH from (Huber and 
Herzberg 1979); N(’W4S) excitation energy from (Moore 1971); AEe derived from 
AE,,=3~75k~al(mol)-~ in (Chase Jr. et al. 1985), and frequencies of HCN (Smith, Coy, 
Klemperer and Lehman 1989), CH (Huber and Herzberg 1979) and Nz (Huber and Herzberg 
1979). 

3 In cm- ’ using SOCI(b) wavefunctions. 

An exit channel minimum energy crossing in the CH+N, system may at first 
appear counter intuitive. The doublet-quartet separation in the reactant channel is 
appreciably smaller than it is in the product channel, see table 13. However this is in fact 
the expected result. The 1 ’A” potential energy surface supports bound intermediates in 
the interaction region and as noted above bond formation destabilizes the multiple 
open shell quartet state. Thus the minimum energy crossing requires a nuclear 
configuration on the 12A” potential energy surface which resembles the less stable 
product channel structure. 

Two additional points concerning the crossing structure should be noted here. As 
seen from table 13 MEX(C,,) is -40 kcal(mol)-l less stable than its C,, counterpart 
MEX(C,,). However the spin-orbit interaction HS0(4A”, ’A”) is also quite different. At 
MEX(C,,), EI;(4A”, ’A’’)=41.9cm-’ while at MEX(C,,), H;(4A”, ’A”)= 12.5cm-l. 
Additional calculations reported elsewhere (Manaa and Yarkony 199 1 b) show that 
these values are (i) representative of the indicated geometrical regions and (ii) not 
significantly altered by increasing the size of the one electron basis or level of electron 
correlation. Thus these results illustrate the important fact that the crossing surface by 
itself is not sufficient to understand a spin-forbidden reaction. It is also necessary to 
have a reliable determination of the Breit-Pauli induced coupling in the vicinity of the 
surface intersection. 
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3.4.5. Discussion 
Although MIN(C,,) and MIN(dative) are geometrically distinct the energy 

difference between these structures is small, only 2.1 kcal (mol)-’, and less than the 
expected accuracy of the present treatment. Further R(C-N’) and R(C-H) are similar 
for the two structures so that the simple internal rotational path shown in figure 6 
converts MIN(dative) into MIN(C,,). Thus a more refined treatment appears necessary 
to unambiguously determine which of these two local extrema is in fact the global 
minimum on the ’A” potential energy surface or whether they coalesce into a single 
(broad/floppy) minimum-a less likely alternative given the quality of the wavefunc- 
tion used in the geometry optimization. This point notwithstanding the present 
calculations do provide, as discussed below, important information concerning the 
mechanism for this reaction and must be contrasted with the only previous estimate of 
the well depth on the ’A” potential energy surface based on kinetic modelling of 
approximately 53-72 kcal (mol)-’ (Berman and Lin 1983) which must now be 
considered as unreliable. 

In a qualitative sense MIN(C,,) is intermediate between the reactant channel 
minimum MIN(dative) and the transition state for this reaction, MEX(C,,). MEX(C,,) 
is largely a product channel structure with a large N-N distance R(N-N) = 2.22 1 A, and 
C-H and C-N bond distances R(C-H) = 1.076(1-06) A and R(C-N’) w R(C- 
N2) w 1-3( 1-1 5) approaching their product channel HCN values which are noted 
parenthetically. In the vicinity of MEX(C,,) E(’A”) is a sensitive function of geometry 
(see figure 5, the largest gradients of E(’A”) are approximately five times the largest 
gradients of E(4A”) in this region). Thus the barrier height for this reaction (ETS), the 
energy at MEX(C,,), is most reliably determined with reference to the geometrically 
similar product channel arrangement using E(4A”) energies. Thus using table 13 and 
correcting for differences in the predicted reaction exoergicity CAE,, AE,(predicted) = 
- 8.5 kcal (mo1)- I, AEJexperiment) = 1.2 kcal (mo1)- ‘1 yields E,, = E[MEX(C,,)] 
- E[CH(X2H) + Nz(X’Xz)] w9.5 kcal (mo1)- ’. This result is in a semiquantitative 
accord with estimates of the activation energy of 10-18 kcal (mo1)- (Benson 1977, 
Blauwens et al. 1977, Matsui and Nomaguchi 1978) and the more recent evaluations of 
14 kcal (mo1)- ’ (Lindackers et al. 1990) and 22 kcal (mo1)- (Dean et al. 1990) based on 
shock wave measurements. 

3.4.6. Propensity for intersystem crossing: a Landau-Zener analysis 
A precise interpretation of the electronic structure data presented above requires a 

detailed analysis of the dynamics of reaction (3.1). However, since a qualitative 
understanding of the import of the present results is important the approximate 
Landau-Zener model introduced in section 2.7 was used to estimate the probability for 
an intersystem crossing PI“, that is the probability of a transition from the 1’A” 
potential energy surface to the 14A” potential energy surface on a single pass through 
the crossing. 

In order to estimate PIc using equation (2.45) the following assumptions/para- 
meters are used (i) it is assumed that dissociation occurs with N’ (see figure 7) leaving 
the HCNl moiety, (ii) u is assumed parallel to the corresponding components of the 
energy difference gradient, (gN: ’ , ) = (0.05,0.003) which is evaluated at the 
crossing structure in table 12 and (iii) HS0(4A”, ’A”)= 12.5 cm- ’. Then assuming 
125(1250)cm-’, that is lO(100) times the spin-orbit interaction, of kinetic energy along 
this coordinate, we find PIc= 1.5 x 10-3(4.6 x These probabilities are consistent 
with those frequently applied in kinetic treatments of intersystem crossing problems. In 

4A” ZA” 4A” 2A“ 

, gN: ’ 
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such treatments it is assumed that a PIc of between 10-'-10- will lead to Arrhenius A 
factors of between 109-1013 (Blauwens et al. 1977, Dean et al. 1990). Since the 
computed transition probabilities, which were determined for energies appreciably 
above threshold, are well within the range of PIc expected for a spin-forbidden reaction 
this analysis provides the direct computational evidence supporting the role of reaction 
(3.1) in the.production of prompt NO in flame fronts. 

Recently two estimates of the Arrhenius A factor have appeared. Dean et al. (1990) 
have estimated A =4*43 x 10" while Lindackers et al. (1990) report A =6-3 x loll.  
While the present estimate is clearly in qualitative accord with the experimental results 
it is clear that a more careful analysis of the dynamics at the crossing, particularly at 
threshold energies, will be required to obtain a complete understanding of this reaction. 

3.4.7. A model for reaction (3.1) 
The calculations suggest a simplified model for reaction (3.1). CH(X211) approaches 

Nz(XIXl) initially forming a dative bond. Energy transfer from this relative 
translational mode to the N, stretch results in a metastable intermediate complex, 
structurally similar to MIN(C,,), which repeatedly traverses the doubletquartet 
crossing seam in the vicinity of the transition state MEX(CzV). In this way the 
intermediate complex MIN(C,,) facilitates the intersystem crossing. Those molecules 
which cross onto the quartet surface proceed, via asymmetric N-N motion, exoergi- 
cally and irrevocably to the products HCN(XIX+) + N(4S). An alternative model, a 
collinearly constrained reaction, a mechanism more consistent with MIN(dative) but 
excluding MIN(C,,), will not lead to reaction because of the large activation energy, see 
MEX(C,,) in tables 12,13. 

This model provides a viable conceptual starting point for discussing the dynamics 
of reaction (3.1). However the propensity for an intersystem crossing will be directly 
related to the lifetime of the intermediate complex. The lifetime will in turn be related to 
the number of internal degrees of freedom available for energy redistribution. Thus 
more complete models in which both MIN(dative) and MIN(C,,) are repeatedly 
sampled may be required to accurately model this reaction. In this regard note from 
table 12 that the C-H bond distance is little changed throughout the course of the 
reaction so that CH vibrational excitation will be of little importance when compared 
for example with Nz vibrational excitation in promoting reaction (3.1). 

4. Conclusions 
This review considered with the computational description of chemical processes 

whose origin is in the Hamiltonian HBP. Recent advances have considerably expanded 
computational capabilities in this area so this review has attempted to catalogue and 
explain the recent progress that has been made in this field and illustrate by example 
that which is now computationally tractable. Three computational advances have been 
discussed: 

(i) The use of symbolic matrix element techniques to evaluate matrix elements 
H"" and H". This approach permits the Breit-Pauli interaction to be 
characterized in terms of the same large configuration state function (CSF) 
spaces (> lo6 terms) routinely available in modern direct CI procedures for the 
description of Y0(Z), the zeroth order non-relativistic CI wavefunction. 

(ii) YA(Z), the Breit-Pauli induced perturbation of Yo(I), is determined within the 
context of quasi-degenerate perturbation theory directly in the CSF basis. 
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This approach avoids the computational bottleneck which occurs if the 
perturbed wavefunction is determined in the eigenstate basis of I f o .  Its use 
appears to be essential in the determination of accurate spin-forbidden 
lifetimes. 

(iii) The use of Lagrange multiplier constrained, analytic gradient based, al- 
gorithm for determining the minimum energy crossing point on the surface of 
intersection of two potential energy surfaces of different spin multiplicity. This 
algorithm, which uses the same large scale CSF spaces noted above, facilitates 
determination of the energetically accessible portion of the crossing hypersur- 
face without having to characterize the crossing surface itself. As illustrated in 
section 3 the structural information obtained from this algorithm can provide 
significant insights into the mechanism of a spin-forbidden chemical reaction. 

Four recently published applications of these algorithms were reviewed. The first, 
which considers the radiative decay process a'A-+X3X- in CH-, was chosen to 
illustrate the practical importance of solving equation (2.12) directly in the CSF basis. 
The second example examined the decay of the a3X+ state of NO', a3C+ +X'X+. This 
treatment illustrated how the use of quasi-degenerate perturbation theory can enable 
the incorporation of potential energy curves of spectroscopic accuracy into the 
calculation of a spin-forbidden radiative lifetime, thereby improving the reliability of 
the calculation. Next we considered spin-forbidden radiationless decay examining the 
decay of NH/ND(c'IT). It was not known, and it was a matter of some controversy and 
practical importance, whether NH(c'n, o = 0) was predissociated. It was shown that 
NH(clIT, o = 0) is in fact predissociated as result principally of a perturbation induced 
by H". To our knowledge this was the first time a predissociation due principally to Hss 
had been reported. Finally we considered the spin-forbidden ground state reaction 
CH(X'J3) + N2(X'Cz)+HCN(X'C') + N(4S). This reaction is the chain initiating step 
in the 'prompt' production of NO in flame fronts. Our discussion of this reaction 
demonstrated how the minimum energy crossing algorithm and a Landau-Zener 
analysis could be used to provide a clear conceptual picture of this spin-forbidden 
reaction and set the stage for a computational determination its rate constant. 
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